Properties

Label 8-75e4-1.1-c1e4-0-1
Degree $8$
Conductor $31640625$
Sign $1$
Analytic cond. $0.128633$
Root an. cond. $0.773872$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·16-s − 32·31-s + 8·61-s − 9·81-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯
L(s)  = 1  + 7/4·16-s − 5.74·31-s + 1.02·61-s − 81-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31640625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31640625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(31640625\)    =    \(3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(0.128633\)
Root analytic conductor: \(0.773872\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 31640625,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7442011239\)
\(L(\frac12)\) \(\approx\) \(0.7442011239\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + p^{2} T^{4} \)
5 \( 1 \)
good2$C_2^3$ \( 1 - 7 T^{4} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 382 T^{4} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 98 T^{4} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 4222 T^{4} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 1778 T^{4} + p^{4} T^{8} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 98 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 9938 T^{4} + p^{4} T^{8} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76081486330043137405137605251, −10.53061872040027379540653170350, −10.41457947495543246540209379939, −9.819690080857000099844974709186, −9.709095682617365801481477083698, −9.229114639916129374277969711062, −9.186000810889273437221384996387, −8.635593233161787413572018965313, −8.509438765201328517434046221591, −8.030321890646285451268884181389, −7.69629943029747480888817969025, −7.34620001755066011427968295329, −7.07167264269865822101784048619, −7.03391025821551306767908559308, −6.14944178014170683784485800338, −5.97508446664511383909886609544, −5.59619503202360186135513635054, −5.23175479693293312759926761244, −5.11986073900510071403803114577, −4.21091389250569490413296196158, −3.93615513183635762614798187508, −3.34831099937780030944362603971, −3.28819910129529287773214584801, −2.17607389815220050882504286441, −1.64009472245150218811766256515, 1.64009472245150218811766256515, 2.17607389815220050882504286441, 3.28819910129529287773214584801, 3.34831099937780030944362603971, 3.93615513183635762614798187508, 4.21091389250569490413296196158, 5.11986073900510071403803114577, 5.23175479693293312759926761244, 5.59619503202360186135513635054, 5.97508446664511383909886609544, 6.14944178014170683784485800338, 7.03391025821551306767908559308, 7.07167264269865822101784048619, 7.34620001755066011427968295329, 7.69629943029747480888817969025, 8.030321890646285451268884181389, 8.509438765201328517434046221591, 8.635593233161787413572018965313, 9.186000810889273437221384996387, 9.229114639916129374277969711062, 9.709095682617365801481477083698, 9.819690080857000099844974709186, 10.41457947495543246540209379939, 10.53061872040027379540653170350, 10.76081486330043137405137605251

Graph of the $Z$-function along the critical line