Properties

Label 8-600e4-1.1-c2e4-0-6
Degree $8$
Conductor $129600000000$
Sign $1$
Analytic cond. $71440.6$
Root an. cond. $4.04336$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·4-s + 8·8-s + 6·9-s − 32·11-s − 4·16-s + 8·17-s − 12·18-s + 32·19-s + 64·22-s + 8·32-s − 16·34-s − 12·36-s − 64·38-s + 40·41-s − 32·43-s + 64·44-s + 76·49-s − 128·59-s − 24·64-s + 256·67-s − 16·68-s + 48·72-s − 200·73-s − 64·76-s + 27·81-s − 80·82-s + ⋯
L(s)  = 1  − 2-s − 1/2·4-s + 8-s + 2/3·9-s − 2.90·11-s − 1/4·16-s + 8/17·17-s − 2/3·18-s + 1.68·19-s + 2.90·22-s + 1/4·32-s − 0.470·34-s − 1/3·36-s − 1.68·38-s + 0.975·41-s − 0.744·43-s + 1.45·44-s + 1.55·49-s − 2.16·59-s − 3/8·64-s + 3.82·67-s − 0.235·68-s + 2/3·72-s − 2.73·73-s − 0.842·76-s + 1/3·81-s − 0.975·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(71440.6\)
Root analytic conductor: \(4.04336\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.238403327\)
\(L(\frac12)\) \(\approx\) \(1.238403327\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$D_{4}$ \( 1 + p T + 3 p T^{2} + p^{3} T^{3} + p^{4} T^{4} \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5 \( 1 \)
good7$C_2^2 \wr C_2$ \( 1 - 76 T^{2} + 3174 T^{4} - 76 p^{4} T^{6} + p^{8} T^{8} \)
11$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{4} \)
13$C_2^2 \wr C_2$ \( 1 - 292 T^{2} + 75366 T^{4} - 292 p^{4} T^{6} + p^{8} T^{8} \)
17$D_{4}$ \( ( 1 - 4 T + 390 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 16 T + 738 T^{2} - 16 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$C_2^2 \wr C_2$ \( 1 - 1636 T^{2} + 1179654 T^{4} - 1636 p^{4} T^{6} + p^{8} T^{8} \)
29$C_2^2 \wr C_2$ \( 1 - 1756 T^{2} + 1539558 T^{4} - 1756 p^{4} T^{6} + p^{8} T^{8} \)
31$C_2^2 \wr C_2$ \( 1 - 460 T^{2} - 683610 T^{4} - 460 p^{4} T^{6} + p^{8} T^{8} \)
37$C_2^2 \wr C_2$ \( 1 - 4612 T^{2} + 8955366 T^{4} - 4612 p^{4} T^{6} + p^{8} T^{8} \)
41$D_{4}$ \( ( 1 - 20 T + 1734 T^{2} - 20 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 16 T + 3330 T^{2} + 16 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$C_2^2 \wr C_2$ \( 1 - 5284 T^{2} + 13593798 T^{4} - 5284 p^{4} T^{6} + p^{8} T^{8} \)
53$C_2^2 \wr C_2$ \( 1 - 9436 T^{2} + 38033574 T^{4} - 9436 p^{4} T^{6} + p^{8} T^{8} \)
59$D_{4}$ \( ( 1 + 64 T + 7554 T^{2} + 64 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
61$C_2^2 \wr C_2$ \( 1 - 11332 T^{2} + 56649510 T^{4} - 11332 p^{4} T^{6} + p^{8} T^{8} \)
67$D_{4}$ \( ( 1 - 128 T + 12642 T^{2} - 128 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$C_2^2 \wr C_2$ \( 1 - 11236 T^{2} + 75307398 T^{4} - 11236 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 + 100 T + 10086 T^{2} + 100 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2^2 \wr C_2$ \( 1 - 17548 T^{2} + 151931046 T^{4} - 17548 p^{4} T^{6} + p^{8} T^{8} \)
83$D_{4}$ \( ( 1 + 80 T + 14610 T^{2} + 80 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 100 T + 11430 T^{2} + 100 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 28 T + 12102 T^{2} + 28 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61542258840329012645970535477, −7.29195110224850485989600912554, −7.28349453185847401813681058526, −6.91399723081180882509068551095, −6.59112947884657261563348688267, −6.32796800363346228714449794889, −5.91748006631100659906437364949, −5.61353949750730808895608274708, −5.39284205091534404044395214331, −5.35646418196184000051858942894, −5.27320611641714452340947286904, −4.58310921317889760398765734495, −4.46664492012255547682013110355, −4.40976640438293000042643650391, −4.07045094647321830864306141037, −3.48509384579519590907906963807, −3.09996136569769432226779285703, −3.08449994843024217978156477494, −2.82264116544843334261125194993, −2.24597278411267552300654334054, −2.05328575705694112575270049135, −1.51763339870187383100952018830, −1.08383281288736366467184932869, −0.50722920726544565022413562557, −0.44990209653661229181022154708, 0.44990209653661229181022154708, 0.50722920726544565022413562557, 1.08383281288736366467184932869, 1.51763339870187383100952018830, 2.05328575705694112575270049135, 2.24597278411267552300654334054, 2.82264116544843334261125194993, 3.08449994843024217978156477494, 3.09996136569769432226779285703, 3.48509384579519590907906963807, 4.07045094647321830864306141037, 4.40976640438293000042643650391, 4.46664492012255547682013110355, 4.58310921317889760398765734495, 5.27320611641714452340947286904, 5.35646418196184000051858942894, 5.39284205091534404044395214331, 5.61353949750730808895608274708, 5.91748006631100659906437364949, 6.32796800363346228714449794889, 6.59112947884657261563348688267, 6.91399723081180882509068551095, 7.28349453185847401813681058526, 7.29195110224850485989600912554, 7.61542258840329012645970535477

Graph of the $Z$-function along the critical line