Properties

Label 600.3.g.a.451.1
Level $600$
Weight $3$
Character 600.451
Analytic conductor $16.349$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(451,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.4752.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} - 6x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 451.1
Root \(-0.866025 - 1.99551i\) of defining polynomial
Character \(\chi\) \(=\) 600.451
Dual form 600.3.g.a.451.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 1.46081i) q^{2} +1.73205 q^{3} +(-0.267949 + 3.99102i) q^{4} +(-2.36603 - 2.53020i) q^{6} -2.13878i q^{7} +(6.19615 - 5.06040i) q^{8} +3.00000 q^{9} -8.00000 q^{11} +(-0.464102 + 6.91264i) q^{12} -11.6865i q^{13} +(-3.12436 + 2.92163i) q^{14} +(-15.8564 - 2.13878i) q^{16} -11.8564 q^{17} +(-4.09808 - 4.38244i) q^{18} +14.9282 q^{19} -3.70447i q^{21} +(10.9282 + 11.6865i) q^{22} +4.27756i q^{23} +(10.7321 - 8.76488i) q^{24} +(-17.0718 + 15.9641i) q^{26} +5.19615 q^{27} +(8.53590 + 0.573084i) q^{28} +0.573084i q^{29} -57.4399i q^{31} +(18.5359 + 26.0849i) q^{32} -13.8564 q^{33} +(16.1962 + 17.3200i) q^{34} +(-0.803848 + 11.9730i) q^{36} -27.6506i q^{37} +(-20.3923 - 21.8073i) q^{38} -20.2416i q^{39} -31.5692 q^{41} +(-5.41154 + 5.06040i) q^{42} -28.7846 q^{43} +(2.14359 - 31.9281i) q^{44} +(6.24871 - 5.84325i) q^{46} -59.5787i q^{47} +(-27.4641 - 3.70447i) q^{48} +44.4256 q^{49} -20.5359 q^{51} +(46.6410 + 3.13139i) q^{52} -31.3550i q^{53} +(-7.09808 - 7.59061i) q^{54} +(-10.8231 - 13.2522i) q^{56} +25.8564 q^{57} +(0.837169 - 0.782847i) q^{58} -52.7846 q^{59} -59.5787i q^{61} +(-83.9090 + 78.4644i) q^{62} -6.41634i q^{63} +(12.7846 - 62.7101i) q^{64} +(18.9282 + 20.2416i) q^{66} +84.7846 q^{67} +(3.17691 - 47.3191i) q^{68} +7.40895i q^{69} -42.4685i q^{71} +(18.5885 - 15.1812i) q^{72} +5.42563 q^{73} +(-40.3923 + 37.7714i) q^{74} +(-4.00000 + 59.5787i) q^{76} +17.1102i q^{77} +(-29.5692 + 27.6506i) q^{78} +44.6072i q^{79} +9.00000 q^{81} +(43.1244 + 46.1167i) q^{82} -67.7128 q^{83} +(14.7846 + 0.992611i) q^{84} +(39.3205 + 42.0489i) q^{86} +0.992611i q^{87} +(-49.5692 + 40.4832i) q^{88} -133.138 q^{89} -24.9948 q^{91} +(-17.0718 - 1.14617i) q^{92} -99.4888i q^{93} +(-87.0333 + 81.3860i) q^{94} +(32.1051 + 45.1803i) q^{96} -97.1384 q^{97} +(-60.6865 - 64.8975i) q^{98} -24.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 8 q^{4} - 6 q^{6} + 4 q^{8} + 12 q^{9} - 32 q^{11} + 12 q^{12} + 36 q^{14} - 8 q^{16} + 8 q^{17} - 6 q^{18} + 32 q^{19} + 16 q^{22} + 36 q^{24} - 96 q^{26} + 48 q^{28} + 88 q^{32} + 44 q^{34}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 1.46081i −0.683013 0.730406i
\(3\) 1.73205 0.577350
\(4\) −0.267949 + 3.99102i −0.0669873 + 0.997754i
\(5\) 0 0
\(6\) −2.36603 2.53020i −0.394338 0.421700i
\(7\) 2.13878i 0.305540i −0.988262 0.152770i \(-0.951181\pi\)
0.988262 0.152770i \(-0.0488193\pi\)
\(8\) 6.19615 5.06040i 0.774519 0.632551i
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −8.00000 −0.727273 −0.363636 0.931541i \(-0.618465\pi\)
−0.363636 + 0.931541i \(0.618465\pi\)
\(12\) −0.464102 + 6.91264i −0.0386751 + 0.576053i
\(13\) 11.6865i 0.898962i −0.893290 0.449481i \(-0.851609\pi\)
0.893290 0.449481i \(-0.148391\pi\)
\(14\) −3.12436 + 2.92163i −0.223168 + 0.208688i
\(15\) 0 0
\(16\) −15.8564 2.13878i −0.991025 0.133674i
\(17\) −11.8564 −0.697436 −0.348718 0.937228i \(-0.613383\pi\)
−0.348718 + 0.937228i \(0.613383\pi\)
\(18\) −4.09808 4.38244i −0.227671 0.243469i
\(19\) 14.9282 0.785695 0.392847 0.919604i \(-0.371490\pi\)
0.392847 + 0.919604i \(0.371490\pi\)
\(20\) 0 0
\(21\) 3.70447i 0.176403i
\(22\) 10.9282 + 11.6865i 0.496737 + 0.531205i
\(23\) 4.27756i 0.185981i 0.995667 + 0.0929904i \(0.0296426\pi\)
−0.995667 + 0.0929904i \(0.970357\pi\)
\(24\) 10.7321 8.76488i 0.447169 0.365203i
\(25\) 0 0
\(26\) −17.0718 + 15.9641i −0.656608 + 0.614002i
\(27\) 5.19615 0.192450
\(28\) 8.53590 + 0.573084i 0.304854 + 0.0204673i
\(29\) 0.573084i 0.0197615i 0.999951 + 0.00988076i \(0.00314519\pi\)
−0.999951 + 0.00988076i \(0.996855\pi\)
\(30\) 0 0
\(31\) 57.4399i 1.85290i −0.376417 0.926450i \(-0.622844\pi\)
0.376417 0.926450i \(-0.377156\pi\)
\(32\) 18.5359 + 26.0849i 0.579247 + 0.815152i
\(33\) −13.8564 −0.419891
\(34\) 16.1962 + 17.3200i 0.476357 + 0.509412i
\(35\) 0 0
\(36\) −0.803848 + 11.9730i −0.0223291 + 0.332585i
\(37\) 27.6506i 0.747313i −0.927567 0.373656i \(-0.878104\pi\)
0.927567 0.373656i \(-0.121896\pi\)
\(38\) −20.3923 21.8073i −0.536640 0.573877i
\(39\) 20.2416i 0.519016i
\(40\) 0 0
\(41\) −31.5692 −0.769981 −0.384990 0.922921i \(-0.625795\pi\)
−0.384990 + 0.922921i \(0.625795\pi\)
\(42\) −5.41154 + 5.06040i −0.128846 + 0.120486i
\(43\) −28.7846 −0.669410 −0.334705 0.942323i \(-0.608637\pi\)
−0.334705 + 0.942323i \(0.608637\pi\)
\(44\) 2.14359 31.9281i 0.0487180 0.725639i
\(45\) 0 0
\(46\) 6.24871 5.84325i 0.135842 0.127027i
\(47\) 59.5787i 1.26763i −0.773484 0.633816i \(-0.781488\pi\)
0.773484 0.633816i \(-0.218512\pi\)
\(48\) −27.4641 3.70447i −0.572169 0.0771765i
\(49\) 44.4256 0.906645
\(50\) 0 0
\(51\) −20.5359 −0.402665
\(52\) 46.6410 + 3.13139i 0.896943 + 0.0602190i
\(53\) 31.3550i 0.591604i −0.955249 0.295802i \(-0.904413\pi\)
0.955249 0.295802i \(-0.0955869\pi\)
\(54\) −7.09808 7.59061i −0.131446 0.140567i
\(55\) 0 0
\(56\) −10.8231 13.2522i −0.193269 0.236646i
\(57\) 25.8564 0.453621
\(58\) 0.837169 0.782847i 0.0144339 0.0134974i
\(59\) −52.7846 −0.894654 −0.447327 0.894370i \(-0.647624\pi\)
−0.447327 + 0.894370i \(0.647624\pi\)
\(60\) 0 0
\(61\) 59.5787i 0.976700i −0.872648 0.488350i \(-0.837599\pi\)
0.872648 0.488350i \(-0.162401\pi\)
\(62\) −83.9090 + 78.4644i −1.35337 + 1.26555i
\(63\) 6.41634i 0.101847i
\(64\) 12.7846 62.7101i 0.199760 0.979845i
\(65\) 0 0
\(66\) 18.9282 + 20.2416i 0.286791 + 0.306691i
\(67\) 84.7846 1.26544 0.632721 0.774380i \(-0.281938\pi\)
0.632721 + 0.774380i \(0.281938\pi\)
\(68\) 3.17691 47.3191i 0.0467193 0.695869i
\(69\) 7.40895i 0.107376i
\(70\) 0 0
\(71\) 42.4685i 0.598147i −0.954230 0.299074i \(-0.903322\pi\)
0.954230 0.299074i \(-0.0966776\pi\)
\(72\) 18.5885 15.1812i 0.258173 0.210850i
\(73\) 5.42563 0.0743236 0.0371618 0.999309i \(-0.488168\pi\)
0.0371618 + 0.999309i \(0.488168\pi\)
\(74\) −40.3923 + 37.7714i −0.545842 + 0.510424i
\(75\) 0 0
\(76\) −4.00000 + 59.5787i −0.0526316 + 0.783930i
\(77\) 17.1102i 0.222211i
\(78\) −29.5692 + 27.6506i −0.379093 + 0.354494i
\(79\) 44.6072i 0.564649i 0.959319 + 0.282324i \(0.0911054\pi\)
−0.959319 + 0.282324i \(0.908895\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 43.1244 + 46.1167i 0.525907 + 0.562399i
\(83\) −67.7128 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(84\) 14.7846 + 0.992611i 0.176007 + 0.0118168i
\(85\) 0 0
\(86\) 39.3205 + 42.0489i 0.457215 + 0.488941i
\(87\) 0.992611i 0.0114093i
\(88\) −49.5692 + 40.4832i −0.563287 + 0.460037i
\(89\) −133.138 −1.49594 −0.747969 0.663734i \(-0.768971\pi\)
−0.747969 + 0.663734i \(0.768971\pi\)
\(90\) 0 0
\(91\) −24.9948 −0.274669
\(92\) −17.0718 1.14617i −0.185563 0.0124583i
\(93\) 99.4888i 1.06977i
\(94\) −87.0333 + 81.3860i −0.925886 + 0.865809i
\(95\) 0 0
\(96\) 32.1051 + 45.1803i 0.334428 + 0.470628i
\(97\) −97.1384 −1.00143 −0.500714 0.865613i \(-0.666929\pi\)
−0.500714 + 0.865613i \(0.666929\pi\)
\(98\) −60.6865 64.8975i −0.619250 0.662220i
\(99\) −24.0000 −0.242424
\(100\) 0 0
\(101\) 62.1370i 0.615218i −0.951513 0.307609i \(-0.900471\pi\)
0.951513 0.307609i \(-0.0995288\pi\)
\(102\) 28.0526 + 29.9991i 0.275025 + 0.294109i
\(103\) 27.8041i 0.269943i 0.990849 + 0.134971i \(0.0430943\pi\)
−0.990849 + 0.134971i \(0.956906\pi\)
\(104\) −59.1384 72.4114i −0.568639 0.696263i
\(105\) 0 0
\(106\) −45.8038 + 42.8318i −0.432112 + 0.404073i
\(107\) −37.7795 −0.353079 −0.176540 0.984294i \(-0.556490\pi\)
−0.176540 + 0.984294i \(0.556490\pi\)
\(108\) −1.39230 + 20.7379i −0.0128917 + 0.192018i
\(109\) 141.691i 1.29992i 0.759968 + 0.649960i \(0.225214\pi\)
−0.759968 + 0.649960i \(0.774786\pi\)
\(110\) 0 0
\(111\) 47.8922i 0.431461i
\(112\) −4.57437 + 33.9133i −0.0408426 + 0.302798i
\(113\) 58.2872 0.515816 0.257908 0.966170i \(-0.416967\pi\)
0.257908 + 0.966170i \(0.416967\pi\)
\(114\) −35.3205 37.7714i −0.309829 0.331328i
\(115\) 0 0
\(116\) −2.28719 0.153557i −0.0197171 0.00132377i
\(117\) 35.0595i 0.299654i
\(118\) 72.1051 + 77.1084i 0.611060 + 0.653461i
\(119\) 25.3582i 0.213094i
\(120\) 0 0
\(121\) −57.0000 −0.471074
\(122\) −87.0333 + 81.3860i −0.713388 + 0.667098i
\(123\) −54.6795 −0.444549
\(124\) 229.244 + 15.3910i 1.84874 + 0.124121i
\(125\) 0 0
\(126\) −9.37307 + 8.76488i −0.0743894 + 0.0695625i
\(127\) 185.152i 1.45789i −0.684571 0.728946i \(-0.740010\pi\)
0.684571 0.728946i \(-0.259990\pi\)
\(128\) −109.072 + 66.9876i −0.852123 + 0.523341i
\(129\) −49.8564 −0.386484
\(130\) 0 0
\(131\) 125.359 0.956939 0.478469 0.878104i \(-0.341192\pi\)
0.478469 + 0.878104i \(0.341192\pi\)
\(132\) 3.71281 55.3011i 0.0281274 0.418948i
\(133\) 31.9281i 0.240061i
\(134\) −115.818 123.854i −0.864313 0.924287i
\(135\) 0 0
\(136\) −73.4641 + 59.9982i −0.540177 + 0.441163i
\(137\) −99.5692 −0.726783 −0.363391 0.931637i \(-0.618381\pi\)
−0.363391 + 0.931637i \(0.618381\pi\)
\(138\) 10.8231 10.1208i 0.0784282 0.0733392i
\(139\) 177.492 1.27692 0.638461 0.769654i \(-0.279571\pi\)
0.638461 + 0.769654i \(0.279571\pi\)
\(140\) 0 0
\(141\) 103.193i 0.731867i
\(142\) −62.0385 + 58.0130i −0.436891 + 0.408542i
\(143\) 93.4920i 0.653790i
\(144\) −47.5692 6.41634i −0.330342 0.0445579i
\(145\) 0 0
\(146\) −7.41154 7.92582i −0.0507640 0.0542865i
\(147\) 76.9474 0.523452
\(148\) 110.354 + 7.40895i 0.745634 + 0.0500605i
\(149\) 87.8023i 0.589277i 0.955609 + 0.294639i \(0.0951993\pi\)
−0.955609 + 0.294639i \(0.904801\pi\)
\(150\) 0 0
\(151\) 219.066i 1.45077i −0.688345 0.725383i \(-0.741663\pi\)
0.688345 0.725383i \(-0.258337\pi\)
\(152\) 92.4974 75.5427i 0.608536 0.496992i
\(153\) −35.5692 −0.232479
\(154\) 24.9948 23.3730i 0.162304 0.151773i
\(155\) 0 0
\(156\) 80.7846 + 5.42373i 0.517850 + 0.0347675i
\(157\) 253.440i 1.61427i 0.590370 + 0.807133i \(0.298982\pi\)
−0.590370 + 0.807133i \(0.701018\pi\)
\(158\) 65.1628 60.9346i 0.412423 0.385662i
\(159\) 54.3085i 0.341563i
\(160\) 0 0
\(161\) 9.14875 0.0568245
\(162\) −12.2942 13.1473i −0.0758903 0.0811563i
\(163\) 102.354 0.627938 0.313969 0.949433i \(-0.398341\pi\)
0.313969 + 0.949433i \(0.398341\pi\)
\(164\) 8.45895 125.993i 0.0515789 0.768251i
\(165\) 0 0
\(166\) 92.4974 + 98.9158i 0.557213 + 0.595878i
\(167\) 281.090i 1.68318i −0.540120 0.841588i \(-0.681621\pi\)
0.540120 0.841588i \(-0.318379\pi\)
\(168\) −18.7461 22.9535i −0.111584 0.136628i
\(169\) 32.4256 0.191868
\(170\) 0 0
\(171\) 44.7846 0.261898
\(172\) 7.71281 114.880i 0.0448419 0.667906i
\(173\) 242.858i 1.40381i 0.712273 + 0.701903i \(0.247666\pi\)
−0.712273 + 0.701903i \(0.752334\pi\)
\(174\) 1.45002 1.35593i 0.00833344 0.00779271i
\(175\) 0 0
\(176\) 126.851 + 17.1102i 0.720746 + 0.0972172i
\(177\) −91.4256 −0.516529
\(178\) 181.870 + 194.490i 1.02174 + 1.09264i
\(179\) 318.354 1.77851 0.889257 0.457409i \(-0.151222\pi\)
0.889257 + 0.457409i \(0.151222\pi\)
\(180\) 0 0
\(181\) 79.5132i 0.439299i 0.975579 + 0.219650i \(0.0704914\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(182\) 34.1436 + 36.5128i 0.187602 + 0.200620i
\(183\) 103.193i 0.563898i
\(184\) 21.6462 + 26.5044i 0.117642 + 0.144046i
\(185\) 0 0
\(186\) −145.335 + 135.904i −0.781369 + 0.730668i
\(187\) 94.8513 0.507226
\(188\) 237.779 + 15.9641i 1.26478 + 0.0849152i
\(189\) 11.1134i 0.0588012i
\(190\) 0 0
\(191\) 352.887i 1.84758i 0.382902 + 0.923789i \(0.374925\pi\)
−0.382902 + 0.923789i \(0.625075\pi\)
\(192\) 22.1436 108.617i 0.115331 0.565714i
\(193\) 284.277 1.47294 0.736469 0.676472i \(-0.236492\pi\)
0.736469 + 0.676472i \(0.236492\pi\)
\(194\) 132.694 + 141.901i 0.683988 + 0.731449i
\(195\) 0 0
\(196\) −11.9038 + 177.303i −0.0607337 + 0.904609i
\(197\) 75.8087i 0.384816i −0.981315 0.192408i \(-0.938370\pi\)
0.981315 0.192408i \(-0.0616297\pi\)
\(198\) 32.7846 + 35.0595i 0.165579 + 0.177068i
\(199\) 104.186i 0.523547i −0.965129 0.261774i \(-0.915693\pi\)
0.965129 0.261774i \(-0.0843074\pi\)
\(200\) 0 0
\(201\) 146.851 0.730603
\(202\) −90.7705 + 84.8807i −0.449359 + 0.420202i
\(203\) 1.22570 0.00603793
\(204\) 5.50258 81.9591i 0.0269734 0.401760i
\(205\) 0 0
\(206\) 40.6166 37.9811i 0.197168 0.184374i
\(207\) 12.8327i 0.0619936i
\(208\) −24.9948 + 185.306i −0.120168 + 0.890894i
\(209\) −119.426 −0.571414
\(210\) 0 0
\(211\) 136.918 0.648900 0.324450 0.945903i \(-0.394821\pi\)
0.324450 + 0.945903i \(0.394821\pi\)
\(212\) 125.138 + 8.40156i 0.590276 + 0.0396300i
\(213\) 73.5575i 0.345341i
\(214\) 51.6077 + 55.1887i 0.241157 + 0.257891i
\(215\) 0 0
\(216\) 32.1962 26.2946i 0.149056 0.121734i
\(217\) −122.851 −0.566135
\(218\) 206.985 193.554i 0.949470 0.887862i
\(219\) 9.39746 0.0429108
\(220\) 0 0
\(221\) 138.560i 0.626968i
\(222\) −69.9615 + 65.4219i −0.315142 + 0.294693i
\(223\) 53.1624i 0.238396i 0.992870 + 0.119198i \(0.0380324\pi\)
−0.992870 + 0.119198i \(0.961968\pi\)
\(224\) 55.7898 39.6442i 0.249061 0.176983i
\(225\) 0 0
\(226\) −79.6218 85.1467i −0.352309 0.376755i
\(227\) 119.846 0.527956 0.263978 0.964529i \(-0.414965\pi\)
0.263978 + 0.964529i \(0.414965\pi\)
\(228\) −6.92820 + 103.193i −0.0303869 + 0.452602i
\(229\) 214.103i 0.934946i 0.884007 + 0.467473i \(0.154836\pi\)
−0.884007 + 0.467473i \(0.845164\pi\)
\(230\) 0 0
\(231\) 29.6358i 0.128293i
\(232\) 2.90004 + 3.55092i 0.0125002 + 0.0153057i
\(233\) 127.436 0.546935 0.273468 0.961881i \(-0.411829\pi\)
0.273468 + 0.961881i \(0.411829\pi\)
\(234\) −51.2154 + 47.8922i −0.218869 + 0.204667i
\(235\) 0 0
\(236\) 14.1436 210.664i 0.0599305 0.892645i
\(237\) 77.2620i 0.326000i
\(238\) 37.0436 34.6400i 0.155646 0.145546i
\(239\) 319.281i 1.33590i −0.744204 0.667952i \(-0.767171\pi\)
0.744204 0.667952i \(-0.232829\pi\)
\(240\) 0 0
\(241\) −247.415 −1.02662 −0.513310 0.858203i \(-0.671581\pi\)
−0.513310 + 0.858203i \(0.671581\pi\)
\(242\) 77.8634 + 83.2663i 0.321750 + 0.344076i
\(243\) 15.5885 0.0641500
\(244\) 237.779 + 15.9641i 0.974506 + 0.0654265i
\(245\) 0 0
\(246\) 74.6936 + 79.8765i 0.303632 + 0.324701i
\(247\) 174.459i 0.706310i
\(248\) −290.669 355.906i −1.17205 1.43511i
\(249\) −117.282 −0.471012
\(250\) 0 0
\(251\) −214.851 −0.855981 −0.427991 0.903783i \(-0.640778\pi\)
−0.427991 + 0.903783i \(0.640778\pi\)
\(252\) 25.6077 + 1.71925i 0.101618 + 0.00682243i
\(253\) 34.2205i 0.135259i
\(254\) −270.473 + 252.923i −1.06485 + 0.995759i
\(255\) 0 0
\(256\) 246.851 + 67.8267i 0.964263 + 0.264948i
\(257\) 84.2769 0.327926 0.163963 0.986467i \(-0.447572\pi\)
0.163963 + 0.986467i \(0.447572\pi\)
\(258\) 68.1051 + 72.8309i 0.263973 + 0.282290i
\(259\) −59.1384 −0.228334
\(260\) 0 0
\(261\) 1.71925i 0.00658717i
\(262\) −171.244 183.126i −0.653601 0.698954i
\(263\) 277.120i 1.05369i 0.849962 + 0.526844i \(0.176625\pi\)
−0.849962 + 0.526844i \(0.823375\pi\)
\(264\) −85.8564 + 70.1190i −0.325214 + 0.265602i
\(265\) 0 0
\(266\) −46.6410 + 43.6146i −0.175342 + 0.163965i
\(267\) −230.603 −0.863680
\(268\) −22.7180 + 338.377i −0.0847685 + 1.26260i
\(269\) 123.701i 0.459855i 0.973208 + 0.229927i \(0.0738489\pi\)
−0.973208 + 0.229927i \(0.926151\pi\)
\(270\) 0 0
\(271\) 197.985i 0.730572i −0.930895 0.365286i \(-0.880971\pi\)
0.930895 0.365286i \(-0.119029\pi\)
\(272\) 188.000 + 25.3582i 0.691176 + 0.0932288i
\(273\) −43.2923 −0.158580
\(274\) 136.014 + 145.452i 0.496402 + 0.530847i
\(275\) 0 0
\(276\) −29.5692 1.98522i −0.107135 0.00719283i
\(277\) 247.709i 0.894256i 0.894470 + 0.447128i \(0.147553\pi\)
−0.894470 + 0.447128i \(0.852447\pi\)
\(278\) −242.459 259.283i −0.872154 0.932673i
\(279\) 172.320i 0.617633i
\(280\) 0 0
\(281\) 443.128 1.57697 0.788484 0.615055i \(-0.210866\pi\)
0.788484 + 0.615055i \(0.210866\pi\)
\(282\) −150.746 + 140.965i −0.534561 + 0.499875i
\(283\) 294.620 1.04106 0.520531 0.853843i \(-0.325734\pi\)
0.520531 + 0.853843i \(0.325734\pi\)
\(284\) 169.492 + 11.3794i 0.596804 + 0.0400683i
\(285\) 0 0
\(286\) 136.574 127.712i 0.477533 0.446547i
\(287\) 67.5196i 0.235260i
\(288\) 55.6077 + 78.2546i 0.193082 + 0.271717i
\(289\) −148.426 −0.513583
\(290\) 0 0
\(291\) −168.249 −0.578174
\(292\) −1.45379 + 21.6538i −0.00497874 + 0.0741567i
\(293\) 66.7217i 0.227719i 0.993497 + 0.113859i \(0.0363214\pi\)
−0.993497 + 0.113859i \(0.963679\pi\)
\(294\) −105.112 112.406i −0.357524 0.382333i
\(295\) 0 0
\(296\) −139.923 171.327i −0.472713 0.578808i
\(297\) −41.5692 −0.139964
\(298\) 128.263 119.940i 0.430412 0.402484i
\(299\) 49.9897 0.167190
\(300\) 0 0
\(301\) 61.5639i 0.204531i
\(302\) −320.014 + 299.249i −1.05965 + 0.990892i
\(303\) 107.624i 0.355196i
\(304\) −236.708 31.9281i −0.778644 0.105027i
\(305\) 0 0
\(306\) 48.5885 + 51.9600i 0.158786 + 0.169804i
\(307\) 524.210 1.70753 0.853763 0.520662i \(-0.174315\pi\)
0.853763 + 0.520662i \(0.174315\pi\)
\(308\) −68.2872 4.58467i −0.221712 0.0148853i
\(309\) 48.1582i 0.155852i
\(310\) 0 0
\(311\) 362.057i 1.16417i 0.813128 + 0.582085i \(0.197763\pi\)
−0.813128 + 0.582085i \(0.802237\pi\)
\(312\) −102.431 125.420i −0.328304 0.401988i
\(313\) −252.277 −0.805996 −0.402998 0.915201i \(-0.632032\pi\)
−0.402998 + 0.915201i \(0.632032\pi\)
\(314\) 370.228 346.205i 1.17907 1.10256i
\(315\) 0 0
\(316\) −178.028 11.9525i −0.563380 0.0378243i
\(317\) 80.3934i 0.253607i 0.991928 + 0.126803i \(0.0404717\pi\)
−0.991928 + 0.126803i \(0.959528\pi\)
\(318\) −79.3346 + 74.1868i −0.249480 + 0.233292i
\(319\) 4.58467i 0.0143720i
\(320\) 0 0
\(321\) −65.4359 −0.203850
\(322\) −12.4974 13.3646i −0.0388119 0.0415050i
\(323\) −176.995 −0.547972
\(324\) −2.41154 + 35.9191i −0.00744303 + 0.110862i
\(325\) 0 0
\(326\) −139.818 149.520i −0.428889 0.458650i
\(327\) 245.417i 0.750509i
\(328\) −195.608 + 159.753i −0.596365 + 0.487052i
\(329\) −127.426 −0.387312
\(330\) 0 0
\(331\) 172.056 0.519808 0.259904 0.965635i \(-0.416309\pi\)
0.259904 + 0.965635i \(0.416309\pi\)
\(332\) 18.1436 270.243i 0.0546494 0.813985i
\(333\) 82.9517i 0.249104i
\(334\) −410.620 + 383.977i −1.22940 + 1.14963i
\(335\) 0 0
\(336\) −7.92305 + 58.7396i −0.0235805 + 0.174820i
\(337\) −564.277 −1.67441 −0.837206 0.546888i \(-0.815813\pi\)
−0.837206 + 0.546888i \(0.815813\pi\)
\(338\) −44.2942 47.3678i −0.131048 0.140141i
\(339\) 100.956 0.297806
\(340\) 0 0
\(341\) 459.519i 1.34756i
\(342\) −61.1769 65.4219i −0.178880 0.191292i
\(343\) 199.817i 0.582556i
\(344\) −178.354 + 145.662i −0.518470 + 0.423435i
\(345\) 0 0
\(346\) 354.771 331.751i 1.02535 0.958817i
\(347\) 286.123 0.824562 0.412281 0.911057i \(-0.364732\pi\)
0.412281 + 0.911057i \(0.364732\pi\)
\(348\) −3.96152 0.265969i −0.0113837 0.000764279i
\(349\) 421.021i 1.20636i −0.797603 0.603182i \(-0.793899\pi\)
0.797603 0.603182i \(-0.206101\pi\)
\(350\) 0 0
\(351\) 60.7249i 0.173005i
\(352\) −148.287 208.679i −0.421270 0.592838i
\(353\) −429.138 −1.21569 −0.607845 0.794056i \(-0.707966\pi\)
−0.607845 + 0.794056i \(0.707966\pi\)
\(354\) 124.890 + 133.556i 0.352796 + 0.377276i
\(355\) 0 0
\(356\) 35.6743 531.358i 0.100209 1.49258i
\(357\) 43.9217i 0.123030i
\(358\) −434.879 465.055i −1.21475 1.29904i
\(359\) 263.673i 0.734465i −0.930129 0.367233i \(-0.880305\pi\)
0.930129 0.367233i \(-0.119695\pi\)
\(360\) 0 0
\(361\) −138.149 −0.382684
\(362\) 116.154 108.617i 0.320867 0.300047i
\(363\) −98.7269 −0.271975
\(364\) 6.69735 99.7548i 0.0183993 0.274052i
\(365\) 0 0
\(366\) −150.746 + 140.965i −0.411875 + 0.385149i
\(367\) 129.544i 0.352981i −0.984302 0.176491i \(-0.943525\pi\)
0.984302 0.176491i \(-0.0564745\pi\)
\(368\) 9.14875 67.8267i 0.0248607 0.184312i
\(369\) −94.7077 −0.256660
\(370\) 0 0
\(371\) −67.0615 −0.180759
\(372\) 397.061 + 26.6580i 1.06737 + 0.0716612i
\(373\) 302.478i 0.810933i −0.914110 0.405467i \(-0.867109\pi\)
0.914110 0.405467i \(-0.132891\pi\)
\(374\) −129.569 138.560i −0.346442 0.370481i
\(375\) 0 0
\(376\) −301.492 369.159i −0.801841 0.981805i
\(377\) 6.69735 0.0177649
\(378\) −16.2346 + 15.1812i −0.0429488 + 0.0401619i
\(379\) −116.210 −0.306623 −0.153312 0.988178i \(-0.548994\pi\)
−0.153312 + 0.988178i \(0.548994\pi\)
\(380\) 0 0
\(381\) 320.693i 0.841715i
\(382\) 515.503 482.053i 1.34948 1.26192i
\(383\) 566.151i 1.47820i 0.673595 + 0.739101i \(0.264749\pi\)
−0.673595 + 0.739101i \(0.735251\pi\)
\(384\) −188.918 + 116.026i −0.491974 + 0.302151i
\(385\) 0 0
\(386\) −388.329 415.275i −1.00603 1.07584i
\(387\) −86.3538 −0.223137
\(388\) 26.0282 387.681i 0.0670829 0.999178i
\(389\) 350.104i 0.900011i 0.893026 + 0.450006i \(0.148578\pi\)
−0.893026 + 0.450006i \(0.851422\pi\)
\(390\) 0 0
\(391\) 50.7165i 0.129710i
\(392\) 275.268 224.812i 0.702214 0.573499i
\(393\) 217.128 0.552489
\(394\) −110.742 + 103.557i −0.281072 + 0.262834i
\(395\) 0 0
\(396\) 6.43078 95.7844i 0.0162393 0.241880i
\(397\) 544.149i 1.37065i 0.728236 + 0.685326i \(0.240340\pi\)
−0.728236 + 0.685326i \(0.759660\pi\)
\(398\) −152.196 + 142.321i −0.382402 + 0.357589i
\(399\) 55.3011i 0.138599i
\(400\) 0 0
\(401\) −296.431 −0.739229 −0.369614 0.929185i \(-0.620510\pi\)
−0.369614 + 0.929185i \(0.620510\pi\)
\(402\) −200.603 214.522i −0.499011 0.533637i
\(403\) −671.272 −1.66569
\(404\) 247.990 + 16.6496i 0.613836 + 0.0412118i
\(405\) 0 0
\(406\) −1.67434 1.79052i −0.00412398 0.00441014i
\(407\) 221.205i 0.543500i
\(408\) −127.244 + 103.920i −0.311871 + 0.254706i
\(409\) −247.415 −0.604927 −0.302464 0.953161i \(-0.597809\pi\)
−0.302464 + 0.953161i \(0.597809\pi\)
\(410\) 0 0
\(411\) −172.459 −0.419608
\(412\) −110.967 7.45009i −0.269337 0.0180827i
\(413\) 112.895i 0.273353i
\(414\) 18.7461 17.5298i 0.0452805 0.0423424i
\(415\) 0 0
\(416\) 304.841 216.620i 0.732791 0.520721i
\(417\) 307.426 0.737232
\(418\) 163.138 + 174.459i 0.390283 + 0.417365i
\(419\) −92.1333 −0.219889 −0.109944 0.993938i \(-0.535067\pi\)
−0.109944 + 0.993938i \(0.535067\pi\)
\(420\) 0 0
\(421\) 445.540i 1.05829i 0.848531 + 0.529145i \(0.177487\pi\)
−0.848531 + 0.529145i \(0.822513\pi\)
\(422\) −187.033 200.011i −0.443207 0.473961i
\(423\) 178.736i 0.422544i
\(424\) −158.669 194.281i −0.374220 0.458209i
\(425\) 0 0
\(426\) −107.454 + 100.481i −0.252239 + 0.235872i
\(427\) −127.426 −0.298421
\(428\) 10.1230 150.778i 0.0236518 0.352286i
\(429\) 161.933i 0.377466i
\(430\) 0 0
\(431\) 186.677i 0.433125i 0.976269 + 0.216563i \(0.0694845\pi\)
−0.976269 + 0.216563i \(0.930515\pi\)
\(432\) −82.3923 11.1134i −0.190723 0.0257255i
\(433\) −291.128 −0.672351 −0.336176 0.941799i \(-0.609134\pi\)
−0.336176 + 0.941799i \(0.609134\pi\)
\(434\) 167.818 + 179.463i 0.386677 + 0.413509i
\(435\) 0 0
\(436\) −565.492 37.9661i −1.29700 0.0870782i
\(437\) 63.8562i 0.146124i
\(438\) −12.8372 13.7279i −0.0293086 0.0313423i
\(439\) 87.6899i 0.199749i −0.995000 0.0998746i \(-0.968156\pi\)
0.995000 0.0998746i \(-0.0318442\pi\)
\(440\) 0 0
\(441\) 133.277 0.302215
\(442\) 202.410 189.276i 0.457942 0.428227i
\(443\) −20.7077 −0.0467441 −0.0233721 0.999727i \(-0.507440\pi\)
−0.0233721 + 0.999727i \(0.507440\pi\)
\(444\) 191.138 + 12.8327i 0.430492 + 0.0289024i
\(445\) 0 0
\(446\) 77.6603 72.6211i 0.174126 0.162828i
\(447\) 152.078i 0.340219i
\(448\) −134.123 27.3435i −0.299382 0.0610345i
\(449\) 584.410 1.30158 0.650791 0.759257i \(-0.274437\pi\)
0.650791 + 0.759257i \(0.274437\pi\)
\(450\) 0 0
\(451\) 252.554 0.559986
\(452\) −15.6180 + 232.625i −0.0345531 + 0.514657i
\(453\) 379.433i 0.837600i
\(454\) −163.713 175.073i −0.360601 0.385623i
\(455\) 0 0
\(456\) 160.210 130.844i 0.351338 0.286938i
\(457\) 269.692 0.590136 0.295068 0.955476i \(-0.404658\pi\)
0.295068 + 0.955476i \(0.404658\pi\)
\(458\) 312.764 292.470i 0.682891 0.638580i
\(459\) −61.6077 −0.134222
\(460\) 0 0
\(461\) 44.4948i 0.0965181i 0.998835 + 0.0482590i \(0.0153673\pi\)
−0.998835 + 0.0482590i \(0.984633\pi\)
\(462\) 43.2923 40.4832i 0.0937064 0.0876261i
\(463\) 611.065i 1.31980i −0.751355 0.659898i \(-0.770600\pi\)
0.751355 0.659898i \(-0.229400\pi\)
\(464\) 1.22570 9.08705i 0.00264159 0.0195842i
\(465\) 0 0
\(466\) −174.081 186.160i −0.373564 0.399485i
\(467\) −146.410 −0.313512 −0.156756 0.987637i \(-0.550104\pi\)
−0.156756 + 0.987637i \(0.550104\pi\)
\(468\) 139.923 + 9.39417i 0.298981 + 0.0200730i
\(469\) 181.336i 0.386643i
\(470\) 0 0
\(471\) 438.971i 0.931997i
\(472\) −327.061 + 267.111i −0.692927 + 0.565914i
\(473\) 230.277 0.486843
\(474\) 112.865 105.542i 0.238113 0.222662i
\(475\) 0 0
\(476\) −101.205 6.79472i −0.212616 0.0142746i
\(477\) 94.0651i 0.197201i
\(478\) −466.410 + 436.146i −0.975753 + 0.912440i
\(479\) 191.876i 0.400576i 0.979737 + 0.200288i \(0.0641878\pi\)
−0.979737 + 0.200288i \(0.935812\pi\)
\(480\) 0 0
\(481\) −323.138 −0.671805
\(482\) 337.976 + 361.428i 0.701194 + 0.749850i
\(483\) 15.8461 0.0328077
\(484\) 15.2731 227.488i 0.0315560 0.470016i
\(485\) 0 0
\(486\) −21.2942 22.7718i −0.0438153 0.0468556i
\(487\) 610.758i 1.25412i 0.778969 + 0.627062i \(0.215743\pi\)
−0.778969 + 0.627062i \(0.784257\pi\)
\(488\) −301.492 369.159i −0.617812 0.756473i
\(489\) 177.282 0.362540
\(490\) 0 0
\(491\) −142.354 −0.289926 −0.144963 0.989437i \(-0.546306\pi\)
−0.144963 + 0.989437i \(0.546306\pi\)
\(492\) 14.6513 218.227i 0.0297791 0.443550i
\(493\) 6.79472i 0.0137824i
\(494\) −254.851 + 238.315i −0.515893 + 0.482419i
\(495\) 0 0
\(496\) −122.851 + 910.791i −0.247684 + 1.83627i
\(497\) −90.8306 −0.182758
\(498\) 160.210 + 171.327i 0.321707 + 0.344030i
\(499\) 91.3693 0.183105 0.0915524 0.995800i \(-0.470817\pi\)
0.0915524 + 0.995800i \(0.470817\pi\)
\(500\) 0 0
\(501\) 486.863i 0.971782i
\(502\) 293.492 + 313.857i 0.584646 + 0.625214i
\(503\) 230.067i 0.457389i −0.973498 0.228695i \(-0.926554\pi\)
0.973498 0.228695i \(-0.0734457\pi\)
\(504\) −32.4693 39.7566i −0.0644231 0.0788821i
\(505\) 0 0
\(506\) −49.9897 + 46.7460i −0.0987939 + 0.0923834i
\(507\) 56.1628 0.110775
\(508\) 738.946 + 49.6114i 1.45462 + 0.0976603i
\(509\) 527.387i 1.03612i −0.855343 0.518062i \(-0.826654\pi\)
0.855343 0.518062i \(-0.173346\pi\)
\(510\) 0 0
\(511\) 11.6042i 0.0227088i
\(512\) −238.123 453.256i −0.465084 0.885267i
\(513\) 77.5692 0.151207
\(514\) −115.124 123.113i −0.223977 0.239519i
\(515\) 0 0
\(516\) 13.3590 198.978i 0.0258895 0.385616i
\(517\) 476.630i 0.921914i
\(518\) 80.7846 + 86.3902i 0.155955 + 0.166776i
\(519\) 420.643i 0.810487i
\(520\) 0 0
\(521\) 191.856 0.368246 0.184123 0.982903i \(-0.441055\pi\)
0.184123 + 0.982903i \(0.441055\pi\)
\(522\) 2.51151 2.34854i 0.00481131 0.00449912i
\(523\) −105.492 −0.201706 −0.100853 0.994901i \(-0.532157\pi\)
−0.100853 + 0.994901i \(0.532157\pi\)
\(524\) −33.5898 + 500.310i −0.0641027 + 0.954789i
\(525\) 0 0
\(526\) 404.820 378.553i 0.769620 0.719682i
\(527\) 681.031i 1.29228i
\(528\) 219.713 + 29.6358i 0.416123 + 0.0561284i
\(529\) 510.703 0.965411
\(530\) 0 0
\(531\) −158.354 −0.298218
\(532\) 127.426 + 8.55511i 0.239522 + 0.0160810i
\(533\) 368.934i 0.692184i
\(534\) 315.009 + 336.867i 0.589904 + 0.630837i
\(535\) 0 0
\(536\) 525.338 429.044i 0.980109 0.800456i
\(537\) 551.405 1.02682
\(538\) 180.704 168.979i 0.335881 0.314087i
\(539\) −355.405 −0.659378
\(540\) 0 0
\(541\) 459.744i 0.849804i 0.905239 + 0.424902i \(0.139691\pi\)
−0.905239 + 0.424902i \(0.860309\pi\)
\(542\) −289.219 + 270.453i −0.533615 + 0.498990i
\(543\) 137.721i 0.253630i
\(544\) −219.769 309.273i −0.403987 0.568516i
\(545\) 0 0
\(546\) 59.1384 + 63.2420i 0.108312 + 0.115828i
\(547\) −67.3693 −0.123161 −0.0615807 0.998102i \(-0.519614\pi\)
−0.0615807 + 0.998102i \(0.519614\pi\)
\(548\) 26.6795 397.382i 0.0486852 0.725150i
\(549\) 178.736i 0.325567i
\(550\) 0 0
\(551\) 8.55511i 0.0155265i
\(552\) 37.4923 + 45.9070i 0.0679208 + 0.0831648i
\(553\) 95.4050 0.172523
\(554\) 361.856 338.377i 0.653170 0.610788i
\(555\) 0 0
\(556\) −47.5589 + 708.374i −0.0855376 + 1.27405i
\(557\) 476.671i 0.855782i −0.903830 0.427891i \(-0.859257\pi\)
0.903830 0.427891i \(-0.140743\pi\)
\(558\) −251.727 + 235.393i −0.451123 + 0.421851i
\(559\) 336.391i 0.601774i
\(560\) 0 0
\(561\) 164.287 0.292847
\(562\) −605.324 647.327i −1.07709 1.15183i
\(563\) 910.123 1.61656 0.808280 0.588799i \(-0.200399\pi\)
0.808280 + 0.588799i \(0.200399\pi\)
\(564\) 411.846 + 27.6506i 0.730224 + 0.0490258i
\(565\) 0 0
\(566\) −402.459 430.385i −0.711058 0.760398i
\(567\) 19.2490i 0.0339489i
\(568\) −214.908 263.141i −0.378358 0.463276i
\(569\) −124.123 −0.218142 −0.109071 0.994034i \(-0.534788\pi\)
−0.109071 + 0.994034i \(0.534788\pi\)
\(570\) 0 0
\(571\) 945.031 1.65504 0.827522 0.561433i \(-0.189750\pi\)
0.827522 + 0.561433i \(0.189750\pi\)
\(572\) −373.128 25.0511i −0.652322 0.0437957i
\(573\) 611.219i 1.06670i
\(574\) 98.6335 92.2335i 0.171835 0.160685i
\(575\) 0 0
\(576\) 38.3538 188.130i 0.0665865 0.326615i
\(577\) −215.682 −0.373799 −0.186899 0.982379i \(-0.559844\pi\)
−0.186899 + 0.982379i \(0.559844\pi\)
\(578\) 202.753 + 216.822i 0.350784 + 0.375125i
\(579\) 492.382 0.850401
\(580\) 0 0
\(581\) 144.823i 0.249265i
\(582\) 229.832 + 245.780i 0.394900 + 0.422302i
\(583\) 250.840i 0.430258i
\(584\) 33.6180 27.4559i 0.0575651 0.0470135i
\(585\) 0 0
\(586\) 97.4679 91.1435i 0.166327 0.155535i
\(587\) −900.785 −1.53456 −0.767278 0.641314i \(-0.778389\pi\)
−0.767278 + 0.641314i \(0.778389\pi\)
\(588\) −20.6180 + 307.098i −0.0350646 + 0.522276i
\(589\) 857.475i 1.45581i
\(590\) 0 0
\(591\) 131.305i 0.222174i
\(592\) −59.1384 + 438.439i −0.0998960 + 0.740606i
\(593\) 508.585 0.857647 0.428824 0.903388i \(-0.358928\pi\)
0.428824 + 0.903388i \(0.358928\pi\)
\(594\) 56.7846 + 60.7249i 0.0955970 + 0.102230i
\(595\) 0 0
\(596\) −350.420 23.5266i −0.587954 0.0394741i
\(597\) 180.455i 0.302270i
\(598\) −68.2872 73.0256i −0.114193 0.122116i
\(599\) 846.934i 1.41391i 0.707257 + 0.706957i \(0.249933\pi\)
−0.707257 + 0.706957i \(0.750067\pi\)
\(600\) 0 0
\(601\) −406.000 −0.675541 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(602\) 89.9334 84.0979i 0.149391 0.139697i
\(603\) 254.354 0.421814
\(604\) 874.295 + 58.6985i 1.44751 + 0.0971829i
\(605\) 0 0
\(606\) −157.219 + 147.018i −0.259438 + 0.242603i
\(607\) 771.156i 1.27044i −0.772332 0.635219i \(-0.780910\pi\)
0.772332 0.635219i \(-0.219090\pi\)
\(608\) 276.708 + 389.400i 0.455111 + 0.640461i
\(609\) 2.12297 0.00348600
\(610\) 0 0
\(611\) −696.267 −1.13955
\(612\) 9.53074 141.957i 0.0155731 0.231956i
\(613\) 336.699i 0.549264i −0.961549 0.274632i \(-0.911444\pi\)
0.961549 0.274632i \(-0.0885560\pi\)
\(614\) −716.084 765.773i −1.16626 1.24719i
\(615\) 0 0
\(616\) 86.5847 + 106.018i 0.140560 + 0.172106i
\(617\) 908.831 1.47298 0.736492 0.676447i \(-0.236481\pi\)
0.736492 + 0.676447i \(0.236481\pi\)
\(618\) 70.3501 65.7853i 0.113835 0.106449i
\(619\) −1047.77 −1.69268 −0.846340 0.532643i \(-0.821199\pi\)
−0.846340 + 0.532643i \(0.821199\pi\)
\(620\) 0 0
\(621\) 22.2268i 0.0357920i
\(622\) 528.897 494.579i 0.850317 0.795143i
\(623\) 284.754i 0.457068i
\(624\) −43.2923 + 320.959i −0.0693788 + 0.514358i
\(625\) 0 0
\(626\) 344.617 + 368.529i 0.550506 + 0.588705i
\(627\) −206.851 −0.329906
\(628\) −1011.48 67.9090i −1.61064 0.108135i
\(629\) 327.836i 0.521202i
\(630\) 0 0
\(631\) 610.758i 0.967921i −0.875090 0.483961i \(-0.839198\pi\)
0.875090 0.483961i \(-0.160802\pi\)
\(632\) 225.731 + 276.393i 0.357169 + 0.437331i
\(633\) 237.149 0.374643
\(634\) 117.440 109.819i 0.185236 0.173217i
\(635\) 0 0
\(636\) 216.746 + 14.5519i 0.340796 + 0.0228804i
\(637\) 519.180i 0.815040i
\(638\) −6.69735 + 6.26278i −0.0104974 + 0.00981627i
\(639\) 127.405i 0.199382i
\(640\) 0 0
\(641\) 9.60015 0.0149768 0.00748842 0.999972i \(-0.497616\pi\)
0.00748842 + 0.999972i \(0.497616\pi\)
\(642\) 89.3872 + 95.5897i 0.139232 + 0.148894i
\(643\) −86.1999 −0.134059 −0.0670295 0.997751i \(-0.521352\pi\)
−0.0670295 + 0.997751i \(0.521352\pi\)
\(644\) −2.45140 + 36.5128i −0.00380652 + 0.0566969i
\(645\) 0 0
\(646\) 241.779 + 258.556i 0.374272 + 0.400242i
\(647\) 352.580i 0.544946i −0.962163 0.272473i \(-0.912158\pi\)
0.962163 0.272473i \(-0.0878416\pi\)
\(648\) 55.7654 45.5436i 0.0860577 0.0702834i
\(649\) 422.277 0.650658
\(650\) 0 0
\(651\) −212.785 −0.326858
\(652\) −27.4256 + 408.496i −0.0420638 + 0.626527i
\(653\) 319.322i 0.489008i −0.969648 0.244504i \(-0.921375\pi\)
0.969648 0.244504i \(-0.0786252\pi\)
\(654\) 358.508 335.245i 0.548177 0.512607i
\(655\) 0 0
\(656\) 500.574 + 67.5196i 0.763071 + 0.102926i
\(657\) 16.2769 0.0247745
\(658\) 174.067 + 186.145i 0.264539 + 0.282895i
\(659\) 275.328 0.417797 0.208898 0.977937i \(-0.433012\pi\)
0.208898 + 0.977937i \(0.433012\pi\)
\(660\) 0 0
\(661\) 133.668i 0.202221i 0.994875 + 0.101111i \(0.0322396\pi\)
−0.994875 + 0.101111i \(0.967760\pi\)
\(662\) −235.033 251.342i −0.355035 0.379671i
\(663\) 239.993i 0.361980i
\(664\) −419.559 + 342.654i −0.631866 + 0.516046i
\(665\) 0 0
\(666\) −121.177 + 113.314i −0.181947 + 0.170141i
\(667\) −2.45140 −0.00367526
\(668\) 1121.84 + 75.3179i 1.67939 + 0.112751i
\(669\) 92.0799i 0.137638i
\(670\) 0 0
\(671\) 476.630i 0.710327i
\(672\) 96.6307 68.6657i 0.143796 0.102181i
\(673\) −187.703 −0.278904 −0.139452 0.990229i \(-0.544534\pi\)
−0.139452 + 0.990229i \(0.544534\pi\)
\(674\) 770.817 + 824.303i 1.14364 + 1.22300i
\(675\) 0 0
\(676\) −8.68842 + 129.411i −0.0128527 + 0.191437i
\(677\) 1169.84i 1.72797i −0.503515 0.863986i \(-0.667960\pi\)
0.503515 0.863986i \(-0.332040\pi\)
\(678\) −137.909 147.478i −0.203406 0.217520i
\(679\) 207.758i 0.305976i
\(680\) 0 0
\(681\) 207.580 0.304816
\(682\) 671.272 627.715i 0.984269 0.920403i
\(683\) −89.4566 −0.130976 −0.0654880 0.997853i \(-0.520860\pi\)
−0.0654880 + 0.997853i \(0.520860\pi\)
\(684\) −12.0000 + 178.736i −0.0175439 + 0.261310i
\(685\) 0 0
\(686\) −291.895 + 272.955i −0.425503 + 0.397893i
\(687\) 370.837i 0.539791i
\(688\) 456.420 + 61.5639i 0.663402 + 0.0894824i
\(689\) −366.431 −0.531830
\(690\) 0 0
\(691\) 139.103 0.201306 0.100653 0.994922i \(-0.467907\pi\)
0.100653 + 0.994922i \(0.467907\pi\)
\(692\) −969.251 65.0737i −1.40065 0.0940371i
\(693\) 51.3307i 0.0740703i
\(694\) −390.851 417.972i −0.563186 0.602265i
\(695\) 0 0
\(696\) 5.02301 + 6.15037i 0.00721697 + 0.00883673i
\(697\) 374.297 0.537012
\(698\) −615.033 + 575.126i −0.881137 + 0.823962i
\(699\) 220.726 0.315773
\(700\) 0 0
\(701\) 1218.34i 1.73801i −0.494804 0.869004i \(-0.664760\pi\)
0.494804 0.869004i \(-0.335240\pi\)
\(702\) −88.7077 + 82.9517i −0.126364 + 0.118165i
\(703\) 412.773i 0.587160i
\(704\) −102.277 + 501.681i −0.145280 + 0.712615i
\(705\) 0 0
\(706\) 586.214 + 626.891i 0.830331 + 0.887948i
\(707\) −132.897 −0.187974
\(708\) 24.4974 364.881i 0.0346009 0.515369i
\(709\) 1080.13i 1.52346i −0.647895 0.761730i \(-0.724351\pi\)
0.647895 0.761730i \(-0.275649\pi\)
\(710\) 0 0
\(711\) 133.822i 0.188216i
\(712\) −824.946 + 673.734i −1.15863 + 0.946256i
\(713\) 245.703 0.344604
\(714\) 64.1615 59.9982i 0.0898620 0.0840311i
\(715\) 0 0
\(716\) −85.3027 + 1270.56i −0.119138 + 1.77452i
\(717\) 553.011i 0.771285i
\(718\) −385.177 + 360.184i −0.536458 + 0.501649i
\(719\) 20.7736i 0.0288923i −0.999896 0.0144461i \(-0.995401\pi\)
0.999896 0.0144461i \(-0.00459851\pi\)
\(720\) 0 0
\(721\) 59.4669 0.0824783
\(722\) 188.715 + 201.809i 0.261378 + 0.279515i
\(723\) −428.536 −0.592719
\(724\) −317.338 21.3055i −0.438313 0.0294275i
\(725\) 0 0
\(726\) 134.863 + 144.222i 0.185762 + 0.198652i
\(727\) 1031.17i 1.41838i −0.705015 0.709192i \(-0.749060\pi\)
0.705015 0.709192i \(-0.250940\pi\)
\(728\) −154.872 + 126.484i −0.212736 + 0.173742i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 341.282 0.466870
\(732\) 411.846 + 27.6506i 0.562631 + 0.0377740i
\(733\) 881.072i 1.20201i 0.799246 + 0.601004i \(0.205233\pi\)
−0.799246 + 0.601004i \(0.794767\pi\)
\(734\) −189.240 + 176.961i −0.257820 + 0.241091i
\(735\) 0 0
\(736\) −111.580 + 79.2884i −0.151603 + 0.107729i
\(737\) −678.277 −0.920321
\(738\) 129.373 + 138.350i 0.175302 + 0.187466i
\(739\) −671.195 −0.908247 −0.454124 0.890939i \(-0.650048\pi\)
−0.454124 + 0.890939i \(0.650048\pi\)
\(740\) 0 0
\(741\) 302.171i 0.407788i
\(742\) 91.6077 + 97.9643i 0.123461 + 0.132027i
\(743\) 254.197i 0.342122i 0.985260 + 0.171061i \(0.0547195\pi\)
−0.985260 + 0.171061i \(0.945281\pi\)
\(744\) −503.454 616.448i −0.676685 0.828559i
\(745\) 0 0
\(746\) −441.864 + 413.193i −0.592311 + 0.553878i
\(747\) −203.138 −0.271939
\(748\) −25.4153 + 378.553i −0.0339777 + 0.506087i
\(749\) 80.8019i 0.107880i
\(750\) 0 0
\(751\) 728.994i 0.970698i −0.874320 0.485349i \(-0.838693\pi\)
0.874320 0.485349i \(-0.161307\pi\)
\(752\) −127.426 + 944.704i −0.169449 + 1.25626i
\(753\) −372.133 −0.494201
\(754\) −9.14875 9.78357i −0.0121336 0.0129756i
\(755\) 0 0
\(756\) 44.3538 + 2.97783i 0.0586691 + 0.00393893i
\(757\) 372.679i 0.492311i −0.969230 0.246155i \(-0.920833\pi\)
0.969230 0.246155i \(-0.0791674\pi\)
\(758\) 158.746 + 169.761i 0.209428 + 0.223960i
\(759\) 59.2716i 0.0780917i
\(760\) 0 0
\(761\) 1257.80 1.65283 0.826416 0.563060i \(-0.190376\pi\)
0.826416 + 0.563060i \(0.190376\pi\)
\(762\) −468.473 + 438.075i −0.614794 + 0.574902i
\(763\) 303.046 0.397177
\(764\) −1408.38 94.5559i −1.84343 0.123764i
\(765\) 0 0
\(766\) 827.041 773.377i 1.07969 1.00963i
\(767\) 616.868i 0.804260i
\(768\) 427.559 + 117.479i 0.556717 + 0.152968i
\(769\) 247.703 0.322110 0.161055 0.986945i \(-0.448510\pi\)
0.161055 + 0.986945i \(0.448510\pi\)
\(770\) 0 0
\(771\) 145.972 0.189328
\(772\) −76.1718 + 1134.55i −0.0986681 + 1.46963i
\(773\) 587.805i 0.760420i 0.924900 + 0.380210i \(0.124148\pi\)
−0.924900 + 0.380210i \(0.875852\pi\)
\(774\) 117.962 + 126.147i 0.152405 + 0.162980i
\(775\) 0 0
\(776\) −601.885 + 491.560i −0.775624 + 0.633453i
\(777\) −102.431 −0.131829
\(778\) 511.437 478.251i 0.657374 0.614719i
\(779\) −471.272 −0.604970
\(780\) 0 0
\(781\) 339.748i 0.435016i
\(782\) −74.0873 + 69.2800i −0.0947407 + 0.0885933i
\(783\) 2.97783i 0.00380311i
\(784\) −704.431 95.0166i −0.898509 0.121195i
\(785\) 0 0
\(786\) −296.603 317.184i −0.377357 0.403541i
\(787\) 31.0821 0.0394944 0.0197472 0.999805i \(-0.493714\pi\)
0.0197472 + 0.999805i \(0.493714\pi\)
\(788\) 302.554 + 20.3129i 0.383951 + 0.0257778i
\(789\) 479.986i 0.608347i
\(790\) 0 0
\(791\) 124.663i 0.157602i
\(792\) −148.708 + 121.450i −0.187762 + 0.153346i
\(793\) −696.267 −0.878016
\(794\) 794.900 743.321i 1.00113 0.936173i
\(795\) 0 0
\(796\) 415.808 + 27.9165i 0.522371 + 0.0350710i
\(797\) 490.260i 0.615132i −0.951527 0.307566i \(-0.900486\pi\)
0.951527 0.307566i \(-0.0995145\pi\)
\(798\) −80.7846 + 75.5427i −0.101234 + 0.0946651i
\(799\) 706.389i 0.884092i
\(800\) 0 0
\(801\) −399.415 −0.498646
\(802\) 404.932 + 433.030i 0.504903 + 0.539938i
\(803\) −43.4050 −0.0540536
\(804\) −39.3487 + 586.086i −0.0489411 + 0.728962i
\(805\) 0 0
\(806\) 916.974 + 980.602i 1.13769 + 1.21663i
\(807\) 214.256i 0.265497i
\(808\) −314.438 385.010i −0.389156 0.476498i
\(809\) 676.102 0.835726 0.417863 0.908510i \(-0.362779\pi\)
0.417863 + 0.908510i \(0.362779\pi\)
\(810\) 0 0
\(811\) −74.1793 −0.0914665 −0.0457332 0.998954i \(-0.514562\pi\)
−0.0457332 + 0.998954i \(0.514562\pi\)
\(812\) −0.328425 + 4.89179i −0.000404465 + 0.00602437i
\(813\) 342.920i 0.421796i
\(814\) 323.138 302.171i 0.396976 0.371217i
\(815\) 0 0
\(816\) 325.626 + 43.9217i 0.399051 + 0.0538257i
\(817\) −429.703 −0.525952
\(818\) 337.976 + 361.428i 0.413173 + 0.441843i
\(819\) −74.9845 −0.0915562
\(820\) 0 0
\(821\) 1130.58i 1.37708i −0.725198 0.688540i \(-0.758252\pi\)
0.725198 0.688540i \(-0.241748\pi\)
\(822\) 235.583 + 251.930i 0.286598 + 0.306485i
\(823\) 82.1839i 0.0998589i 0.998753 + 0.0499295i \(0.0158997\pi\)
−0.998753 + 0.0499295i \(0.984100\pi\)
\(824\) 140.700 + 172.279i 0.170753 + 0.209076i
\(825\) 0 0
\(826\) 164.918 154.217i 0.199658 0.186703i
\(827\) −1504.57 −1.81931 −0.909655 0.415365i \(-0.863654\pi\)
−0.909655 + 0.415365i \(0.863654\pi\)
\(828\) −51.2154 3.43850i −0.0618543 0.00415278i
\(829\) 1409.65i 1.70042i 0.526445 + 0.850209i \(0.323525\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(830\) 0 0
\(831\) 429.044i 0.516299i
\(832\) −732.862 149.407i −0.880843 0.179576i
\(833\) −526.728 −0.632327
\(834\) −419.951 449.091i −0.503539 0.538479i
\(835\) 0 0
\(836\) 32.0000 476.630i 0.0382775 0.570131i
\(837\) 298.467i 0.356591i
\(838\) 125.856 + 134.589i 0.150187 + 0.160608i
\(839\) 288.110i 0.343397i −0.985150 0.171698i \(-0.945075\pi\)
0.985150 0.171698i \(-0.0549254\pi\)
\(840\) 0 0
\(841\) 840.672 0.999609
\(842\) 650.851 608.620i 0.772982 0.722826i
\(843\) 767.520 0.910463
\(844\) −36.6870 + 546.441i −0.0434681 + 0.647442i
\(845\) 0 0
\(846\) −261.100 + 244.158i −0.308629 + 0.288603i
\(847\) 121.910i 0.143932i
\(848\) −67.0615 + 497.178i −0.0790819 + 0.586295i
\(849\) 510.297 0.601057
\(850\) 0 0
\(851\) 118.277 0.138986
\(852\) 293.569 + 19.7097i 0.344565 + 0.0231334i
\(853\) 645.132i 0.756310i 0.925742 + 0.378155i \(0.123441\pi\)
−0.925742 + 0.378155i \(0.876559\pi\)
\(854\) 174.067 + 186.145i 0.203825 + 0.217968i
\(855\) 0 0
\(856\) −234.087 + 191.179i −0.273466 + 0.223340i
\(857\) 995.549 1.16167 0.580833 0.814022i \(-0.302727\pi\)
0.580833 + 0.814022i \(0.302727\pi\)
\(858\) 236.554 221.205i 0.275704 0.257814i
\(859\) −774.354 −0.901460 −0.450730 0.892660i \(-0.648836\pi\)
−0.450730 + 0.892660i \(0.648836\pi\)
\(860\) 0 0
\(861\) 116.947i 0.135827i
\(862\) 272.700 255.005i 0.316357 0.295830i
\(863\) 1007.33i 1.16724i −0.812025 0.583622i \(-0.801635\pi\)
0.812025 0.583622i \(-0.198365\pi\)
\(864\) 96.3154 + 135.541i 0.111476 + 0.156876i
\(865\) 0 0
\(866\) 397.688 + 425.284i 0.459225 + 0.491090i
\(867\) −257.081 −0.296518
\(868\) 32.9179 490.301i 0.0379238 0.564863i
\(869\) 356.858i 0.410654i
\(870\) 0 0
\(871\) 990.836i 1.13758i
\(872\) 717.015 + 877.941i 0.822265 + 1.00681i
\(873\) −291.415 −0.333809
\(874\) 93.2820 87.2293i 0.106730 0.0998046i
\(875\) 0 0
\(876\) −2.51804 + 37.5054i −0.00287448 + 0.0428144i
\(877\) 681.645i 0.777246i −0.921397 0.388623i \(-0.872951\pi\)
0.921397 0.388623i \(-0.127049\pi\)
\(878\) −128.099 + 119.787i −0.145898 + 0.136431i
\(879\) 115.565i 0.131474i
\(880\) 0 0
\(881\) −679.108 −0.770837 −0.385419 0.922742i \(-0.625943\pi\)
−0.385419 + 0.922742i \(0.625943\pi\)
\(882\) −182.060 194.693i −0.206417 0.220740i
\(883\) 1059.44 1.19982 0.599910 0.800068i \(-0.295203\pi\)
0.599910 + 0.800068i \(0.295203\pi\)
\(884\) −552.995 37.1270i −0.625560 0.0419989i
\(885\) 0 0
\(886\) 28.2872 + 30.2500i 0.0319268 + 0.0341422i
\(887\) 856.411i 0.965514i 0.875754 + 0.482757i \(0.160365\pi\)
−0.875754 + 0.482757i \(0.839635\pi\)
\(888\) −242.354 296.747i −0.272921 0.334175i
\(889\) −396.000 −0.445444
\(890\) 0 0
\(891\) −72.0000 −0.0808081
\(892\) −212.172 14.2448i −0.237861 0.0159695i
\(893\) 889.403i 0.995972i
\(894\) 222.158 207.743i 0.248499 0.232374i
\(895\) 0 0
\(896\) 143.272 + 233.280i 0.159901 + 0.260358i
\(897\) 86.5847 0.0965270
\(898\) −798.319 853.714i −0.888997 0.950684i
\(899\) 32.9179 0.0366161
\(900\) 0 0
\(901\) 371.758i 0.412606i
\(902\) −344.995 368.934i −0.382478 0.409018i
\(903\) 106.632i 0.118086i
\(904\) 361.156 294.957i 0.399509 0.326280i
\(905\) 0 0
\(906\) −554.281 + 518.315i −0.611789 + 0.572092i
\(907\) 761.492 0.839573 0.419786 0.907623i \(-0.362105\pi\)
0.419786 + 0.907623i \(0.362105\pi\)
\(908\) −32.1127 + 478.308i −0.0353664 + 0.526770i
\(909\) 186.411i 0.205073i
\(910\) 0 0
\(911\) 897.344i 0.985009i −0.870310 0.492505i \(-0.836081\pi\)
0.870310 0.492505i \(-0.163919\pi\)
\(912\) −409.990 55.3011i −0.449550 0.0606372i
\(913\) 541.703 0.593321
\(914\) −368.406 393.970i −0.403070 0.431039i
\(915\) 0 0
\(916\) −854.487 57.3686i −0.932846 0.0626295i
\(917\) 268.115i 0.292383i
\(918\) 84.1577 + 89.9973i 0.0916750 + 0.0980363i
\(919\) 62.6388i 0.0681598i 0.999419 + 0.0340799i \(0.0108501\pi\)
−0.999419 + 0.0340799i \(0.989150\pi\)
\(920\) 0 0
\(921\) 907.959 0.985840
\(922\) 64.9986 60.7811i 0.0704974 0.0659231i
\(923\) −496.308 −0.537712
\(924\) −118.277 7.94089i −0.128005 0.00859403i
\(925\) 0 0
\(926\) −892.652 + 834.731i −0.963987 + 0.901437i
\(927\) 83.4124i 0.0899810i
\(928\) −14.9488 + 10.6226i −0.0161086 + 0.0114468i
\(929\) 253.313 0.272673 0.136336 0.990663i \(-0.456467\pi\)
0.136336 + 0.990663i \(0.456467\pi\)
\(930\) 0 0
\(931\) 663.195 0.712347
\(932\) −34.1464 + 508.599i −0.0366377 + 0.545707i
\(933\) 627.101i 0.672134i
\(934\) 200.000 + 213.878i 0.214133 + 0.228991i
\(935\) 0 0
\(936\) −177.415 217.234i −0.189546 0.232088i
\(937\) 30.5538 0.0326081 0.0163040 0.999867i \(-0.494810\pi\)
0.0163040 + 0.999867i \(0.494810\pi\)
\(938\) −264.897 + 247.709i −0.282406 + 0.264082i
\(939\) −436.956 −0.465342
\(940\) 0 0
\(941\) 388.745i 0.413119i −0.978434 0.206559i \(-0.933773\pi\)
0.978434 0.206559i \(-0.0662267\pi\)
\(942\) 641.254 599.645i 0.680737 0.636566i
\(943\) 135.039i 0.143202i
\(944\) 836.974 + 112.895i 0.886625 + 0.119592i
\(945\) 0 0
\(946\) −314.564 336.391i −0.332520 0.355594i
\(947\) 263.615 0.278369 0.139184 0.990266i \(-0.455552\pi\)
0.139184 + 0.990266i \(0.455552\pi\)
\(948\) −308.354 20.7023i −0.325268 0.0218379i
\(949\) 63.4066i 0.0668141i
\(950\) 0 0
\(951\) 139.245i 0.146420i
\(952\) 128.323 + 157.123i 0.134793 + 0.165046i
\(953\) −1292.41 −1.35615 −0.678075 0.734993i \(-0.737185\pi\)
−0.678075 + 0.734993i \(0.737185\pi\)
\(954\) −137.412 + 128.495i −0.144037 + 0.134691i
\(955\) 0 0
\(956\) 1274.26 + 85.5511i 1.33290 + 0.0894886i
\(957\) 7.94089i 0.00829769i
\(958\) 280.295 262.107i 0.292583 0.273598i
\(959\) 212.957i 0.222061i
\(960\) 0 0
\(961\) −2338.34 −2.43324
\(962\) 441.415 + 472.045i 0.458852 + 0.490691i
\(963\) −113.338 −0.117693
\(964\) 66.2947 987.438i 0.0687705 1.02431i
\(965\) 0 0
\(966\) −21.6462 23.1482i −0.0224080 0.0239629i
\(967\) 1110.00i 1.14788i 0.818896 + 0.573942i \(0.194587\pi\)
−0.818896 + 0.573942i \(0.805413\pi\)
\(968\) −353.181 + 288.443i −0.364856 + 0.297978i
\(969\) −306.564 −0.316372
\(970\) 0 0
\(971\) −1341.66 −1.38173 −0.690866 0.722983i \(-0.742770\pi\)
−0.690866 + 0.722983i \(0.742770\pi\)
\(972\) −4.17691 + 62.2138i −0.00429724 + 0.0640059i
\(973\) 379.617i 0.390151i
\(974\) 892.204 834.311i 0.916020 0.856583i
\(975\) 0 0
\(976\) −127.426 + 944.704i −0.130559 + 0.967934i
\(977\) 920.431 0.942099 0.471050 0.882107i \(-0.343875\pi\)
0.471050 + 0.882107i \(0.343875\pi\)
\(978\) −242.172 258.976i −0.247619 0.264802i
\(979\) 1065.11 1.08795
\(980\) 0 0
\(981\) 425.074i 0.433307i
\(982\) 194.459 + 207.952i 0.198023 + 0.211764i
\(983\) 1697.84i 1.72720i −0.504176 0.863601i \(-0.668204\pi\)
0.504176 0.863601i \(-0.331796\pi\)
\(984\) −338.802 + 276.700i −0.344311 + 0.281200i
\(985\) 0 0
\(986\) −9.92581 + 9.28176i −0.0100667 + 0.00941355i
\(987\) −220.708 −0.223615
\(988\) 696.267 + 46.7460i 0.704723 + 0.0473138i
\(989\) 123.128i 0.124497i
\(990\) 0 0
\(991\) 284.765i 0.287351i 0.989625 + 0.143675i \(0.0458921\pi\)
−0.989625 + 0.143675i \(0.954108\pi\)
\(992\) 1498.31 1064.70i 1.51040 1.07329i
\(993\) 298.010 0.300111
\(994\) 124.077 + 132.687i 0.124826 + 0.133487i
\(995\) 0 0
\(996\) 31.4256 468.074i 0.0315518 0.469954i
\(997\) 1093.80i 1.09710i −0.836119 0.548548i \(-0.815181\pi\)
0.836119 0.548548i \(-0.184819\pi\)
\(998\) −124.813 133.473i −0.125063 0.133741i
\(999\) 143.677i 0.143820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.g.a.451.1 4
4.3 odd 2 2400.3.g.a.751.2 4
5.2 odd 4 600.3.p.a.499.5 8
5.3 odd 4 600.3.p.a.499.4 8
5.4 even 2 24.3.b.a.19.4 yes 4
8.3 odd 2 inner 600.3.g.a.451.2 4
8.5 even 2 2400.3.g.a.751.1 4
15.14 odd 2 72.3.b.b.19.1 4
20.3 even 4 2400.3.p.a.1999.3 8
20.7 even 4 2400.3.p.a.1999.6 8
20.19 odd 2 96.3.b.a.79.3 4
40.3 even 4 600.3.p.a.499.6 8
40.13 odd 4 2400.3.p.a.1999.2 8
40.19 odd 2 24.3.b.a.19.3 4
40.27 even 4 600.3.p.a.499.3 8
40.29 even 2 96.3.b.a.79.4 4
40.37 odd 4 2400.3.p.a.1999.7 8
60.59 even 2 288.3.b.b.271.4 4
80.19 odd 4 768.3.g.h.511.5 8
80.29 even 4 768.3.g.h.511.1 8
80.59 odd 4 768.3.g.h.511.4 8
80.69 even 4 768.3.g.h.511.8 8
120.29 odd 2 288.3.b.b.271.1 4
120.59 even 2 72.3.b.b.19.2 4
240.29 odd 4 2304.3.g.z.1279.7 8
240.59 even 4 2304.3.g.z.1279.2 8
240.149 odd 4 2304.3.g.z.1279.1 8
240.179 even 4 2304.3.g.z.1279.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.b.a.19.3 4 40.19 odd 2
24.3.b.a.19.4 yes 4 5.4 even 2
72.3.b.b.19.1 4 15.14 odd 2
72.3.b.b.19.2 4 120.59 even 2
96.3.b.a.79.3 4 20.19 odd 2
96.3.b.a.79.4 4 40.29 even 2
288.3.b.b.271.1 4 120.29 odd 2
288.3.b.b.271.4 4 60.59 even 2
600.3.g.a.451.1 4 1.1 even 1 trivial
600.3.g.a.451.2 4 8.3 odd 2 inner
600.3.p.a.499.3 8 40.27 even 4
600.3.p.a.499.4 8 5.3 odd 4
600.3.p.a.499.5 8 5.2 odd 4
600.3.p.a.499.6 8 40.3 even 4
768.3.g.h.511.1 8 80.29 even 4
768.3.g.h.511.4 8 80.59 odd 4
768.3.g.h.511.5 8 80.19 odd 4
768.3.g.h.511.8 8 80.69 even 4
2304.3.g.z.1279.1 8 240.149 odd 4
2304.3.g.z.1279.2 8 240.59 even 4
2304.3.g.z.1279.7 8 240.29 odd 4
2304.3.g.z.1279.8 8 240.179 even 4
2400.3.g.a.751.1 4 8.5 even 2
2400.3.g.a.751.2 4 4.3 odd 2
2400.3.p.a.1999.2 8 40.13 odd 4
2400.3.p.a.1999.3 8 20.3 even 4
2400.3.p.a.1999.6 8 20.7 even 4
2400.3.p.a.1999.7 8 40.37 odd 4