Properties

Label 8-444e4-1.1-c1e4-0-4
Degree $8$
Conductor $38862602496$
Sign $1$
Analytic cond. $157.993$
Root an. cond. $1.88291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9·5-s + 9-s + 6·11-s − 15·13-s − 18·15-s − 6·17-s + 3·19-s + 39·25-s + 2·27-s − 12·33-s + 6·37-s + 30·39-s − 13·41-s + 9·45-s − 16·47-s − 7·49-s + 12·51-s + 16·53-s + 54·55-s − 6·57-s + 21·59-s − 12·61-s − 135·65-s − 67-s − 4·71-s − 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s + 4.02·5-s + 1/3·9-s + 1.80·11-s − 4.16·13-s − 4.64·15-s − 1.45·17-s + 0.688·19-s + 39/5·25-s + 0.384·27-s − 2.08·33-s + 0.986·37-s + 4.80·39-s − 2.03·41-s + 1.34·45-s − 2.33·47-s − 49-s + 1.68·51-s + 2.19·53-s + 7.28·55-s − 0.794·57-s + 2.73·59-s − 1.53·61-s − 16.7·65-s − 0.122·67-s − 0.474·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(157.993\)
Root analytic conductor: \(1.88291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.360870685\)
\(L(\frac12)\) \(\approx\) \(2.360870685\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2^2$ \( 1 - 6 T - T^{2} - 6 p T^{3} + p^{2} T^{4} \)
good5$D_4\times C_2$ \( 1 - 9 T + 42 T^{2} - 27 p T^{3} + 67 p T^{4} - 27 p^{2} T^{5} + 42 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \) 4.5.aj_bq_aff_mx
7$C_2$$\times$$C_2^2$ \( ( 1 + p T^{2} )^{2}( 1 - p T^{2} + p^{2} T^{4} ) \) 4.7.a_h_a_a
11$D_{4}$ \( ( 1 - 3 T + 19 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.11.ag_bv_agy_bev
13$D_4\times C_2$ \( 1 + 15 T + 118 T^{2} + 645 T^{3} + 2655 T^{4} + 645 p T^{5} + 118 p^{2} T^{6} + 15 p^{3} T^{7} + p^{4} T^{8} \) 4.13.p_eo_yv_dyd
17$C_2^2$ \( ( 1 + 3 T + 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.17.g_bx_io_bxk
19$D_4\times C_2$ \( 1 - 3 T + 40 T^{2} - 111 T^{3} + 1065 T^{4} - 111 p T^{5} + 40 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \) 4.19.ad_bo_aeh_boz
23$D_4\times C_2$ \( 1 - 3 T^{2} + 929 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_ad_a_bjt
29$C_2^2$ \( ( 1 - 55 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_aeg_a_gzb
31$D_4\times C_2$ \( 1 - 56 T^{2} + 1950 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_ace_a_cxa
41$D_4\times C_2$ \( 1 + 13 T + 50 T^{2} + 481 T^{3} + 5551 T^{4} + 481 p T^{5} + 50 p^{2} T^{6} + 13 p^{3} T^{7} + p^{4} T^{8} \) 4.41.n_by_sn_ifn
43$D_4\times C_2$ \( 1 - 167 T^{2} + 10665 T^{4} - 167 p^{2} T^{6} + p^{4} T^{8} \) 4.43.a_agl_a_puf
47$D_{4}$ \( ( 1 + 8 T + 89 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.q_ji_dfs_bbdz
53$D_4\times C_2$ \( 1 - 16 T + 107 T^{2} - 688 T^{3} + 5824 T^{4} - 688 p T^{5} + 107 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \) 4.53.aq_ed_abam_iqa
59$D_4\times C_2$ \( 1 - 21 T + 286 T^{2} - 2919 T^{3} + 24513 T^{4} - 2919 p T^{5} + 286 p^{2} T^{6} - 21 p^{3} T^{7} + p^{4} T^{8} \) 4.59.av_la_aeih_bkgv
61$D_4\times C_2$ \( 1 + 12 T + 154 T^{2} + 1272 T^{3} + 10443 T^{4} + 1272 p T^{5} + 154 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \) 4.61.m_fy_bwy_plr
67$D_4\times C_2$ \( 1 + T - 128 T^{2} - 5 T^{3} + 12085 T^{4} - 5 p T^{5} - 128 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \) 4.67.b_aey_af_rwv
71$D_4\times C_2$ \( 1 + 4 T - 46 T^{2} - 320 T^{3} - 2333 T^{4} - 320 p T^{5} - 46 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \) 4.71.e_abu_ami_adlt
73$D_{4}$ \( ( 1 + 2 T - 42 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.e_adc_eu_tgg
79$D_4\times C_2$ \( 1 + 9 T + 148 T^{2} + 1089 T^{3} + 10533 T^{4} + 1089 p T^{5} + 148 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \) 4.79.j_fs_bpx_ppd
83$D_4\times C_2$ \( 1 - 14 T + 2 T^{2} - 392 T^{3} + 14479 T^{4} - 392 p T^{5} + 2 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \) 4.83.ao_c_apc_vkx
89$D_4\times C_2$ \( 1 - 30 T + 490 T^{2} - 5700 T^{3} + 54879 T^{4} - 5700 p T^{5} + 490 p^{2} T^{6} - 30 p^{3} T^{7} + p^{4} T^{8} \) 4.89.abe_sw_ailg_ddet
97$D_4\times C_2$ \( 1 - 227 T^{2} + 25269 T^{4} - 227 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_ait_a_bljx
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86764278746090935493762137854, −7.79904924400233327466142179003, −7.29818754290870853533673624458, −7.12535543519158306061131845852, −6.96367306037660345376970548719, −6.62693296630144699850604104165, −6.49333252062224199800646906147, −6.28110116116793554076849117725, −6.11942716326835370032412221890, −5.80242888948068270648543950730, −5.44420901701393670502133083922, −5.35567725405135821361300909978, −4.97068385266799375650502006116, −4.94521613227002102642862566277, −4.67157970288311480383182166492, −4.45712252383345080275487200664, −3.88102656448249022878361636369, −3.32120507966397985979596947426, −3.06429220976426916792342612684, −2.33283869257859256342312621777, −2.30001298623258855455797941412, −2.29632598435277872632752667342, −1.66124289423111128507702649091, −1.50406318103013110175424909662, −0.54128237400190053152063453537, 0.54128237400190053152063453537, 1.50406318103013110175424909662, 1.66124289423111128507702649091, 2.29632598435277872632752667342, 2.30001298623258855455797941412, 2.33283869257859256342312621777, 3.06429220976426916792342612684, 3.32120507966397985979596947426, 3.88102656448249022878361636369, 4.45712252383345080275487200664, 4.67157970288311480383182166492, 4.94521613227002102642862566277, 4.97068385266799375650502006116, 5.35567725405135821361300909978, 5.44420901701393670502133083922, 5.80242888948068270648543950730, 6.11942716326835370032412221890, 6.28110116116793554076849117725, 6.49333252062224199800646906147, 6.62693296630144699850604104165, 6.96367306037660345376970548719, 7.12535543519158306061131845852, 7.29818754290870853533673624458, 7.79904924400233327466142179003, 7.86764278746090935493762137854

Graph of the $Z$-function along the critical line