Properties

Label 8-416e4-1.1-c1e4-0-14
Degree $8$
Conductor $29948379136$
Sign $1$
Analytic cond. $121.753$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·7-s + 4·9-s + 8·17-s − 16·23-s − 4·25-s + 20·31-s + 8·41-s − 20·47-s + 68·49-s + 48·63-s + 12·71-s − 16·73-s − 8·79-s − 6·81-s − 16·97-s + 24·113-s + 96·119-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 32·153-s + 157-s − 192·161-s + ⋯
L(s)  = 1  + 4.53·7-s + 4/3·9-s + 1.94·17-s − 3.33·23-s − 4/5·25-s + 3.59·31-s + 1.24·41-s − 2.91·47-s + 68/7·49-s + 6.04·63-s + 1.42·71-s − 1.87·73-s − 0.900·79-s − 2/3·81-s − 1.62·97-s + 2.25·113-s + 8.80·119-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 2.58·153-s + 0.0798·157-s − 15.1·161-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(121.753\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.694547348\)
\(L(\frac12)\) \(\approx\) \(5.694547348\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) 4.3.a_ae_a_w
5$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.5.a_e_a_cc
7$D_{4}$ \( ( 1 - 6 T + 20 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.7.am_cy_amm_bmo
11$D_4\times C_2$ \( 1 - 20 T^{2} + 234 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_au_a_ja
17$D_{4}$ \( ( 1 - 4 T + 26 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.17.ai_cq_ang_cre
19$D_4\times C_2$ \( 1 - 68 T^{2} + 1866 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \) 4.19.a_acq_a_ctu
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \) 4.23.q_hg_cai_lpu
29$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_aee_a_guw
31$D_{4}$ \( ( 1 - 10 T + 84 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.31.au_ki_adkm_wlu
37$D_4\times C_2$ \( 1 - 44 T^{2} + 2454 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \) 4.37.a_abs_a_dqk
41$D_{4}$ \( ( 1 - 4 T + 38 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.ai_do_ayi_jbi
43$D_4\times C_2$ \( 1 - 116 T^{2} + 6294 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \) 4.43.a_aem_a_jic
47$D_{4}$ \( ( 1 + 10 T + 116 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.u_mu_evk_boja
53$D_4\times C_2$ \( 1 - 84 T^{2} + 4310 T^{4} - 84 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_adg_a_gju
59$D_4\times C_2$ \( 1 - 132 T^{2} + 8618 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_afc_a_mtm
61$D_4\times C_2$ \( 1 - 116 T^{2} + 7734 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \) 4.61.a_aem_a_llm
67$D_4\times C_2$ \( 1 - 260 T^{2} + 25866 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_aka_a_bmgw
71$D_{4}$ \( ( 1 - 6 T + 124 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.am_ky_adma_btfu
73$D_{4}$ \( ( 1 + 8 T + 150 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.q_oa_fhg_ckws
79$D_{4}$ \( ( 1 + 4 T + 150 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.i_me_csm_cdms
83$D_4\times C_2$ \( 1 - 276 T^{2} + 32522 T^{4} - 276 p^{2} T^{6} + p^{4} T^{8} \) 4.83.a_akq_a_bwcw
89$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \) 4.89.a_ajk_a_btlu
97$D_{4}$ \( ( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.97.q_ki_esm_cjpm
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.048053884433717412966713175205, −8.040250212608570617062275085161, −7.83355508684672240742556567360, −7.53917559313879621791417810081, −7.38416258737571490855768464135, −6.86174036002332583599412977952, −6.83257414458794671606690733897, −6.19942722935809631447847378801, −6.01614624589092733144762643822, −5.84488552469939751394640381288, −5.55997228536087349195201798109, −5.18920524149733486870680427447, −4.98462993962920393861146330572, −4.56341897588010696309581687180, −4.41732901128861139050070445484, −4.38201926300298958803600849563, −4.26692585259710853775119678502, −3.57585239248970004918043916706, −3.34185235138908500483979879441, −2.75611734095306427474401187718, −2.22449239575256709356198648105, −1.91365119986622245651772896758, −1.71860494754989938813745621894, −1.25787348341261807773421410633, −1.10579467925375330757809358005, 1.10579467925375330757809358005, 1.25787348341261807773421410633, 1.71860494754989938813745621894, 1.91365119986622245651772896758, 2.22449239575256709356198648105, 2.75611734095306427474401187718, 3.34185235138908500483979879441, 3.57585239248970004918043916706, 4.26692585259710853775119678502, 4.38201926300298958803600849563, 4.41732901128861139050070445484, 4.56341897588010696309581687180, 4.98462993962920393861146330572, 5.18920524149733486870680427447, 5.55997228536087349195201798109, 5.84488552469939751394640381288, 6.01614624589092733144762643822, 6.19942722935809631447847378801, 6.83257414458794671606690733897, 6.86174036002332583599412977952, 7.38416258737571490855768464135, 7.53917559313879621791417810081, 7.83355508684672240742556567360, 8.040250212608570617062275085161, 8.048053884433717412966713175205

Graph of the $Z$-function along the critical line