| L(s) = 1 | + 2.15e4·4-s + 4.48e5·7-s + 6.64e7·13-s + 1.02e8·16-s − 1.38e9·19-s + 1.06e10·25-s + 9.66e9·28-s − 6.31e9·31-s − 4.09e11·37-s − 7.62e11·43-s − 2.35e12·49-s + 1.43e12·52-s + 6.85e11·61-s + 2.13e11·64-s + 1.40e13·67-s + 2.21e13·73-s − 2.98e13·76-s + 6.86e12·79-s + 2.98e13·91-s − 2.43e14·97-s + 2.29e14·100-s − 1.34e14·103-s + 3.05e13·109-s + 4.59e13·112-s + 1.40e15·121-s − 1.35e14·124-s + 127-s + ⋯ |
| L(s) = 1 | + 1.31·4-s + 0.545·7-s + 1.05·13-s + 0.381·16-s − 1.54·19-s + 1.75·25-s + 0.716·28-s − 0.229·31-s − 4.31·37-s − 2.80·43-s − 3.47·49-s + 1.39·52-s + 0.218·61-s + 0.0484·64-s + 2.31·67-s + 2.00·73-s − 2.03·76-s + 0.357·79-s + 0.577·91-s − 3.01·97-s + 2.29·100-s − 1.09·103-s + 0.167·109-s + 0.207·112-s + 3.68·121-s − 0.301·124-s − 0.844·133-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 531441 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531441 ^{s/2} \, \Gamma_{\C}(s+7)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{15}{2})\) |
\(\approx\) |
\(6.704475909\) |
| \(L(\frac12)\) |
\(\approx\) |
\(6.704475909\) |
| \(L(8)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.674218244256886003108810796880, −9.673330935928662647405118253912, −8.710444942367302712121627358016, −8.564795962751385917745591393716, −8.314653869722091109380520577017, −8.278089891500644689839457637623, −7.57052957276382955578116273899, −6.90363132603266501546393967507, −6.66727627281360357325577099703, −6.64101169731220395374741062366, −6.59249427128767193145692946314, −5.52329553186400640106126602255, −5.44267854887156965292637676894, −5.02349429110505446761466380083, −4.54233262796765001584589712095, −4.17670027732078644464582615456, −3.31964935216139471836199231909, −3.29518960340929097363840867223, −3.13371934686053897206560121690, −2.03523267117628102918366145156, −2.01232974651216085067637829258, −1.72324537101499645735644323422, −1.41449003820266548618067860770, −0.49738787547196007130855852066, −0.45618296817073361982064137311,
0.45618296817073361982064137311, 0.49738787547196007130855852066, 1.41449003820266548618067860770, 1.72324537101499645735644323422, 2.01232974651216085067637829258, 2.03523267117628102918366145156, 3.13371934686053897206560121690, 3.29518960340929097363840867223, 3.31964935216139471836199231909, 4.17670027732078644464582615456, 4.54233262796765001584589712095, 5.02349429110505446761466380083, 5.44267854887156965292637676894, 5.52329553186400640106126602255, 6.59249427128767193145692946314, 6.64101169731220395374741062366, 6.66727627281360357325577099703, 6.90363132603266501546393967507, 7.57052957276382955578116273899, 8.278089891500644689839457637623, 8.314653869722091109380520577017, 8.564795962751385917745591393716, 8.710444942367302712121627358016, 9.673330935928662647405118253912, 9.674218244256886003108810796880