Properties

Label 8-2925e4-1.1-c1e4-0-2
Degree $8$
Conductor $7.320\times 10^{13}$
Sign $1$
Analytic cond. $297585.$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 5·16-s − 8·19-s + 8·31-s + 20·49-s − 40·61-s − 20·64-s − 16·76-s + 16·79-s + 40·109-s − 20·121-s + 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 4-s − 5/4·16-s − 1.83·19-s + 1.43·31-s + 20/7·49-s − 5.12·61-s − 5/2·64-s − 1.83·76-s + 1.80·79-s + 3.83·109-s − 1.81·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.153·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(297585.\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.737514230\)
\(L(\frac12)\) \(\approx\) \(1.737514230\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \) 4.2.a_ac_a_j
7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_au_a_hq
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_u_a_ne
17$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_bc_a_bdu
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \) 4.19.i_dw_su_epa
23$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_e_a_bow
29$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_u_a_cqo
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.31.ai_fs_abdw_ktq
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \) 4.37.a_afk_a_lhu
41$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_cq_a_gru
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_abs_a_gew
47$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_bc_a_gvm
53$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.53.a_aie_a_yyg
59$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_ie_a_baxy
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \) 4.61.bo_bgm_qtk_gacs
67$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_eu_a_sze
71$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_ka_a_bnxu
73$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_ado_a_sxi
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \) 4.79.aq_pw_afzs_dafm
83$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_aem_a_zji
89$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \) 4.89.a_ka_a_bwli
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \) 4.97.a_ahg_a_boxq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.33667521123317372985277593092, −6.11617910835117565393654758465, −5.74710096825923939908363690228, −5.67804491588762768491590946936, −5.55759045154070788979653439559, −5.24658863438574082178813398988, −4.79307103875145028552725567594, −4.58582551978435087327153162889, −4.55106774943340329366770566473, −4.45435267427318885017037057862, −4.31311113416572596671201352315, −3.88969032024867705437802038694, −3.74627089746051257141118827603, −3.28989431015129472861471038317, −3.13777105191266907660845842579, −2.96669207862143173750172345935, −2.79185469229515332739538860600, −2.28625621297087126292755738529, −2.14719474997115338030361967289, −2.08159230916042271230957987179, −1.93990995362286380185102193009, −1.27491567267923539406844613668, −1.20731590201477604696342268204, −0.64296612699810335872346788223, −0.21417575453941567693903686781, 0.21417575453941567693903686781, 0.64296612699810335872346788223, 1.20731590201477604696342268204, 1.27491567267923539406844613668, 1.93990995362286380185102193009, 2.08159230916042271230957987179, 2.14719474997115338030361967289, 2.28625621297087126292755738529, 2.79185469229515332739538860600, 2.96669207862143173750172345935, 3.13777105191266907660845842579, 3.28989431015129472861471038317, 3.74627089746051257141118827603, 3.88969032024867705437802038694, 4.31311113416572596671201352315, 4.45435267427318885017037057862, 4.55106774943340329366770566473, 4.58582551978435087327153162889, 4.79307103875145028552725567594, 5.24658863438574082178813398988, 5.55759045154070788979653439559, 5.67804491588762768491590946936, 5.74710096825923939908363690228, 6.11617910835117565393654758465, 6.33667521123317372985277593092

Graph of the $Z$-function along the critical line