L(s) = 1 | + 4·13-s − 16-s + 4·37-s + 8·61-s − 4·73-s − 4·97-s − 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s − 4·208-s + 211-s + 223-s + ⋯ |
L(s) = 1 | + 4·13-s − 16-s + 4·37-s + 8·61-s − 4·73-s − 4·97-s − 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s − 4·208-s + 211-s + 223-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.142428209\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.142428209\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.64747098805120691184909267847, −6.35175253581084763014283145672, −6.08668790884684171125330374672, −6.05859654140790274552649071012, −5.70452837210724423017190116379, −5.58276539574117155910167620115, −5.54317726806590554613646252838, −5.17391405350923039570019567132, −5.00238914735269829362090752738, −4.51281808394313480380039980726, −4.37847692682159068456559231276, −4.04181494028507596218540911966, −4.01206291634033377387879825591, −3.94146379536193648027774343567, −3.77404026685464120427890007793, −3.24465530149377068280897280932, −3.16469496419755024217743693587, −2.75881612795767472752281658457, −2.49571025435960771538350945956, −2.42781610075457734949426527156, −2.06339675318706831918557671464, −1.54593821261901323970231263088, −1.28672435472889844620330286073, −1.02461204492146758925674189109, −0.869590929755249138369379602033,
0.869590929755249138369379602033, 1.02461204492146758925674189109, 1.28672435472889844620330286073, 1.54593821261901323970231263088, 2.06339675318706831918557671464, 2.42781610075457734949426527156, 2.49571025435960771538350945956, 2.75881612795767472752281658457, 3.16469496419755024217743693587, 3.24465530149377068280897280932, 3.77404026685464120427890007793, 3.94146379536193648027774343567, 4.01206291634033377387879825591, 4.04181494028507596218540911966, 4.37847692682159068456559231276, 4.51281808394313480380039980726, 5.00238914735269829362090752738, 5.17391405350923039570019567132, 5.54317726806590554613646252838, 5.58276539574117155910167620115, 5.70452837210724423017190116379, 6.05859654140790274552649071012, 6.08668790884684171125330374672, 6.35175253581084763014283145672, 6.64747098805120691184909267847