Properties

Label 2340.1.be.b
Level $2340$
Weight $1$
Character orbit 2340.be
Analytic conductor $1.168$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,1,Mod(359,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 2, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.359"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2340.be (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.16781212956\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.5931900.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} + \zeta_{8} q^{5} - \zeta_{8} q^{8} + q^{10} + q^{13} - q^{16} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{17} - \zeta_{8}^{3} q^{20} + \zeta_{8}^{2} q^{25} - \zeta_{8}^{3} q^{26} + \cdots - \zeta_{8} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{10} + 4 q^{13} - 4 q^{16} - 4 q^{34} + 4 q^{37} + 4 q^{58} + 8 q^{61} - 4 q^{73} + 4 q^{85} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-1\) \(-\zeta_{8}^{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
359.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i 0 1.00000i −0.707107 + 0.707107i 0 0 0.707107 0.707107i 0 1.00000
359.2 0.707107 + 0.707107i 0 1.00000i 0.707107 0.707107i 0 0 −0.707107 + 0.707107i 0 1.00000
1799.1 −0.707107 + 0.707107i 0 1.00000i −0.707107 0.707107i 0 0 0.707107 + 0.707107i 0 1.00000
1799.2 0.707107 0.707107i 0 1.00000i 0.707107 + 0.707107i 0 0 −0.707107 0.707107i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
3.b odd 2 1 inner
12.b even 2 1 inner
65.g odd 4 1 inner
195.n even 4 1 inner
260.u even 4 1 inner
780.bb odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.1.be.b yes 4
3.b odd 2 1 inner 2340.1.be.b yes 4
4.b odd 2 1 CM 2340.1.be.b yes 4
5.b even 2 1 2340.1.be.a 4
12.b even 2 1 inner 2340.1.be.b yes 4
13.d odd 4 1 2340.1.be.a 4
15.d odd 2 1 2340.1.be.a 4
20.d odd 2 1 2340.1.be.a 4
39.f even 4 1 2340.1.be.a 4
52.f even 4 1 2340.1.be.a 4
60.h even 2 1 2340.1.be.a 4
65.g odd 4 1 inner 2340.1.be.b yes 4
156.l odd 4 1 2340.1.be.a 4
195.n even 4 1 inner 2340.1.be.b yes 4
260.u even 4 1 inner 2340.1.be.b yes 4
780.bb odd 4 1 inner 2340.1.be.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2340.1.be.a 4 5.b even 2 1
2340.1.be.a 4 13.d odd 4 1
2340.1.be.a 4 15.d odd 2 1
2340.1.be.a 4 20.d odd 2 1
2340.1.be.a 4 39.f even 4 1
2340.1.be.a 4 52.f even 4 1
2340.1.be.a 4 60.h even 2 1
2340.1.be.a 4 156.l odd 4 1
2340.1.be.b yes 4 1.a even 1 1 trivial
2340.1.be.b yes 4 3.b odd 2 1 inner
2340.1.be.b yes 4 4.b odd 2 1 CM
2340.1.be.b yes 4 12.b even 2 1 inner
2340.1.be.b yes 4 65.g odd 4 1 inner
2340.1.be.b yes 4 195.n even 4 1 inner
2340.1.be.b yes 4 260.u even 4 1 inner
2340.1.be.b yes 4 780.bb odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{37}^{2} - 2T_{37} + 2 \) acting on \(S_{1}^{\mathrm{new}}(2340, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T - 2)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 16 \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
show more
show less