L(s) = 1 | − 2·5-s + 7-s + 3·11-s + 2·13-s + 18·17-s − 2·19-s + 3·23-s + 25-s − 3·29-s − 2·31-s − 2·35-s − 16·37-s − 6·41-s − 17·43-s + 9·47-s + 6·49-s − 6·55-s − 3·59-s − 61-s − 4·65-s − 14·67-s − 24·71-s − 22·73-s + 3·77-s + 4·79-s − 9·83-s − 36·85-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.377·7-s + 0.904·11-s + 0.554·13-s + 4.36·17-s − 0.458·19-s + 0.625·23-s + 1/5·25-s − 0.557·29-s − 0.359·31-s − 0.338·35-s − 2.63·37-s − 0.937·41-s − 2.59·43-s + 1.31·47-s + 6/7·49-s − 0.809·55-s − 0.390·59-s − 0.128·61-s − 0.496·65-s − 1.71·67-s − 2.84·71-s − 2.57·73-s + 0.341·77-s + 0.450·79-s − 0.987·83-s − 3.90·85-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3913165071 |
L(21) |
≈ |
0.3913165071 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T+T2)2 |
good | 7 | D4×C2 | 1−T−5T2+8T3−20T4+8pT5−5p2T6−p3T7+p4T8 |
| 11 | D4×C2 | 1−3T−7T2+18T3+36T4+18pT5−7p2T6−3p3T7+p4T8 |
| 13 | D4×C2 | 1−2T+10T2+64T3−185T4+64pT5+10p2T6−2p3T7+p4T8 |
| 17 | D4 | (1−9T+46T2−9pT3+p2T4)2 |
| 19 | D4 | (1+T+30T2+pT3+p2T4)2 |
| 23 | D4×C2 | 1−3T−31T2+18T3+864T4+18pT5−31p2T6−3p3T7+p4T8 |
| 29 | D4×C2 | 1+3T−43T2−18T3+1602T4−18pT5−43p2T6+3p3T7+p4T8 |
| 31 | D4×C2 | 1+2T−26T2−64T3−185T4−64pT5−26p2T6+2p3T7+p4T8 |
| 37 | C2 | (1+4T+pT2)4 |
| 41 | C22 | (1+3T−32T2+3pT3+p2T4)2 |
| 43 | D4×C2 | 1+17T+139T2+1088T3+8224T4+1088pT5+139p2T6+17p3T7+p4T8 |
| 47 | D4×C2 | 1−9T−25T2−108T3+5220T4−108pT5−25p2T6−9p3T7+p4T8 |
| 53 | C22 | (1−26T2+p2T4)2 |
| 59 | D4×C2 | 1+3T−103T2−18T3+8532T4−18pT5−103p2T6+3p3T7+p4T8 |
| 61 | D4×C2 | 1+T−47T2−74T3−1478T4−74pT5−47p2T6+p3T7+p4T8 |
| 67 | C22 | (1+7T−18T2+7pT3+p2T4)2 |
| 71 | C2 | (1+6T+pT2)4 |
| 73 | D4 | (1+11T+102T2+11pT3+p2T4)2 |
| 79 | C22 | (1−2T−75T2−2pT3+p2T4)2 |
| 83 | D4×C2 | 1+9T−97T2+108T3+18072T4+108pT5−97p2T6+9p3T7+p4T8 |
| 89 | D4 | (1+15T+160T2+15pT3+p2T4)2 |
| 97 | D4×C2 | 1−11T−95T2−242T3+25510T4−242pT5−95p2T6−11p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.60719439416172647058980097680, −6.04861493998483332078206496686, −5.84445433871508404300560822672, −5.84315399154088439119580258964, −5.57894415115371518130931005317, −5.49055643837319231914326888234, −5.41579970014688605350626889843, −4.77664744588682740242015216761, −4.75876216426576077822711256841, −4.61386431427759819082598315660, −4.32545865104193855440291381480, −4.01660146687051783073530087133, −3.71856314478104067363303091762, −3.48297232477116297028425260396, −3.40561046180895867081244788786, −3.33554607798702019121595924936, −2.97106047633670901965720122850, −2.82065025277579673759799089896, −2.40724324228254774161873856449, −1.68980191857602202439598792166, −1.65818213202416626105002197996, −1.49284249398105826957327862181, −1.23443358669135368815778335351, −0.867548070377326672663479227381, −0.10535307833362608397612487114,
0.10535307833362608397612487114, 0.867548070377326672663479227381, 1.23443358669135368815778335351, 1.49284249398105826957327862181, 1.65818213202416626105002197996, 1.68980191857602202439598792166, 2.40724324228254774161873856449, 2.82065025277579673759799089896, 2.97106047633670901965720122850, 3.33554607798702019121595924936, 3.40561046180895867081244788786, 3.48297232477116297028425260396, 3.71856314478104067363303091762, 4.01660146687051783073530087133, 4.32545865104193855440291381480, 4.61386431427759819082598315660, 4.75876216426576077822711256841, 4.77664744588682740242015216761, 5.41579970014688605350626889843, 5.49055643837319231914326888234, 5.57894415115371518130931005317, 5.84315399154088439119580258964, 5.84445433871508404300560822672, 6.04861493998483332078206496686, 6.60719439416172647058980097680