Properties

Label 8-208e4-1.1-c1e4-0-1
Degree $8$
Conductor $1871773696$
Sign $1$
Analytic cond. $7.60959$
Root an. cond. $1.28875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 9-s − 6·13-s − 6·17-s − 4·23-s + 11·25-s − 2·27-s − 4·29-s − 12·39-s − 30·43-s + 7·49-s − 12·51-s + 16·53-s + 28·61-s − 8·69-s + 22·75-s + 28·79-s − 7·81-s − 8·87-s + 4·101-s + 4·103-s + 16·107-s + 40·113-s + 6·117-s + 8·121-s + 127-s − 60·129-s + ⋯
L(s)  = 1  + 1.15·3-s − 1/3·9-s − 1.66·13-s − 1.45·17-s − 0.834·23-s + 11/5·25-s − 0.384·27-s − 0.742·29-s − 1.92·39-s − 4.57·43-s + 49-s − 1.68·51-s + 2.19·53-s + 3.58·61-s − 0.963·69-s + 2.54·75-s + 3.15·79-s − 7/9·81-s − 0.857·87-s + 0.398·101-s + 0.394·103-s + 1.54·107-s + 3.76·113-s + 0.554·117-s + 8/11·121-s + 0.0887·127-s − 5.28·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7.60959\)
Root analytic conductor: \(1.28875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.627463310\)
\(L(\frac12)\) \(\approx\) \(1.627463310\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
good3$D_{4}$ \( ( 1 - T + 2 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \) 4.3.ac_f_ak_bc
5$D_4\times C_2$ \( 1 - 11 T^{2} + 76 T^{4} - 11 p^{2} T^{6} + p^{4} T^{8} \) 4.5.a_al_a_cy
7$D_4\times C_2$ \( 1 - p T^{2} + 4 T^{4} - p^{3} T^{6} + p^{4} T^{8} \) 4.7.a_ah_a_e
11$D_4\times C_2$ \( 1 - 8 T^{2} + 190 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_ai_a_hi
17$D_{4}$ \( ( 1 + 3 T + 32 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.17.g_cv_li_cvk
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_acq_a_cug
23$D_{4}$ \( ( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.23.e_cm_ie_dek
29$D_{4}$ \( ( 1 + 2 T + 42 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.e_dk_ky_flm
31$D_4\times C_2$ \( 1 - 88 T^{2} + 3790 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_adk_a_fpu
37$D_4\times C_2$ \( 1 - 27 T^{2} + 1964 T^{4} - 27 p^{2} T^{6} + p^{4} T^{8} \) 4.37.a_abb_a_cxo
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \) 4.41.a_abk_a_flu
43$D_{4}$ \( ( 1 + 15 T + 138 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \) 4.43.be_th_iaw_ckgy
47$D_4\times C_2$ \( 1 - 119 T^{2} + 7444 T^{4} - 119 p^{2} T^{6} + p^{4} T^{8} \) 4.47.a_aep_a_lai
53$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.aq_gq_acnw_wre
59$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_abk_a_kug
61$D_{4}$ \( ( 1 - 14 T + 154 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.abc_tk_aixo_ddmc
67$D_4\times C_2$ \( 1 - 184 T^{2} + 15742 T^{4} - 184 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_ahc_a_xhm
71$D_4\times C_2$ \( 1 - 207 T^{2} + 20756 T^{4} - 207 p^{2} T^{6} + p^{4} T^{8} \) 4.71.a_ahz_a_besi
73$D_4\times C_2$ \( 1 + 32 T^{2} + 5406 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} \) 4.73.a_bg_a_hzy
79$D_{4}$ \( ( 1 - 14 T + 190 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.abc_we_alds_enrq
83$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_aho_a_bipi
89$D_4\times C_2$ \( 1 - 320 T^{2} + 41374 T^{4} - 320 p^{2} T^{6} + p^{4} T^{8} \) 4.89.a_ami_a_cjfi
97$D_4\times C_2$ \( 1 - 244 T^{2} + 32614 T^{4} - 244 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_ajk_a_bwgk
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.945106442960110903944438951950, −8.820820666356372044886541583390, −8.561093818661276367832808065335, −8.342872319307089119756477996582, −8.207271747403520063644408107762, −7.85490991353646313061301191892, −7.31309324514304342352421951481, −7.22985179894940092914701658185, −6.84873395150265571987361621358, −6.77588611208347028386675194576, −6.58775575131870785047016559507, −5.96763607290205902632952773588, −5.69588013458124994887251510723, −5.36112109606811661327052679404, −4.92739199494164754532049910346, −4.88024002068977209787611849174, −4.47554647673368164616675853446, −4.15082296394663614773849374791, −3.46540152404583342168904368140, −3.24493170084955650768751205588, −3.21363377967580390312145810641, −2.24780562246778179626587056746, −2.24747092535608378802647047353, −2.08938866182824901652739459135, −0.69192462608921522235827333748, 0.69192462608921522235827333748, 2.08938866182824901652739459135, 2.24747092535608378802647047353, 2.24780562246778179626587056746, 3.21363377967580390312145810641, 3.24493170084955650768751205588, 3.46540152404583342168904368140, 4.15082296394663614773849374791, 4.47554647673368164616675853446, 4.88024002068977209787611849174, 4.92739199494164754532049910346, 5.36112109606811661327052679404, 5.69588013458124994887251510723, 5.96763607290205902632952773588, 6.58775575131870785047016559507, 6.77588611208347028386675194576, 6.84873395150265571987361621358, 7.22985179894940092914701658185, 7.31309324514304342352421951481, 7.85490991353646313061301191892, 8.207271747403520063644408107762, 8.342872319307089119756477996582, 8.561093818661276367832808065335, 8.820820666356372044886541583390, 8.945106442960110903944438951950

Graph of the $Z$-function along the critical line