Properties

Label 8-200e4-1.1-c1e4-0-5
Degree $8$
Conductor $1600000000$
Sign $1$
Analytic cond. $6.50471$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 8·9-s + 16·31-s + 16·36-s − 16·49-s − 8·64-s − 48·71-s + 16·79-s + 30·81-s − 24·89-s + 20·121-s + 32·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 4-s + 8/3·9-s + 2.87·31-s + 8/3·36-s − 2.28·49-s − 64-s − 5.69·71-s + 1.80·79-s + 10/3·81-s − 2.54·89-s + 1.81·121-s + 2.87·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(6.50471\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.582154265\)
\(L(\frac12)\) \(\approx\) \(2.582154265\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \) 4.3.a_ai_a_bi
7$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_q_a_gg
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_au_a_ne
13$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.13.a_aca_a_bna
17$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_u_a_bac
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \) 4.19.a_aca_a_cbu
23$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_dc_a_dyg
29$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.29.a_aem_a_hmc
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \) 4.31.aq_im_acpc_rso
37$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) 4.37.a_ae_a_ebm
41$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.41.a_gi_a_oxy
43$C_2^2$ \( ( 1 - 68 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_afg_a_mic
47$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_dc_a_ixm
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \) 4.53.a_afs_a_qks
59$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_au_a_klq
61$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_aim_a_bcxq
67$C_2^2$ \( ( 1 - 116 T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_aiy_a_bhew
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \) 4.71.bw_bse_zjc_jwxq
73$C_2^2$ \( ( 1 + 122 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_jk_a_bluk
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \) 4.79.aq_pw_afzs_dafm
83$C_2^2$ \( ( 1 - 68 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_afg_a_bbfu
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \) 4.89.y_wa_kts_ezco
97$C_2^2$ \( ( 1 + 170 T^{2} + p^{2} T^{4} )^{2} \) 4.97.a_nc_a_cspi
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.034863629622467509287143467742, −8.832145599322449668914095871666, −8.695699550072317462418536656108, −8.282645942650435356617524267475, −7.85707682480165890286615358516, −7.73282640100581079560050460003, −7.42487511676325838299668484747, −7.32798481457538144726195690871, −6.82943163525927008037660426903, −6.76710428352093850918858975959, −6.35968494916170159000235810775, −6.27815644379175218601079071807, −6.00381366325380480048907955818, −5.28444214105113213666722943446, −5.24511594469597190508984221240, −4.53433247909762088506813914182, −4.47236384871779669162619044799, −4.31314495397481653900372926294, −3.97974849598179258217987595414, −3.15822956043620498674773716229, −3.07148660936987295083142404534, −2.65329971194560918062265518434, −1.92664439541243910113160453401, −1.59781487526740669129278210192, −1.18281765734069650974819840474, 1.18281765734069650974819840474, 1.59781487526740669129278210192, 1.92664439541243910113160453401, 2.65329971194560918062265518434, 3.07148660936987295083142404534, 3.15822956043620498674773716229, 3.97974849598179258217987595414, 4.31314495397481653900372926294, 4.47236384871779669162619044799, 4.53433247909762088506813914182, 5.24511594469597190508984221240, 5.28444214105113213666722943446, 6.00381366325380480048907955818, 6.27815644379175218601079071807, 6.35968494916170159000235810775, 6.76710428352093850918858975959, 6.82943163525927008037660426903, 7.32798481457538144726195690871, 7.42487511676325838299668484747, 7.73282640100581079560050460003, 7.85707682480165890286615358516, 8.282645942650435356617524267475, 8.695699550072317462418536656108, 8.832145599322449668914095871666, 9.034863629622467509287143467742

Graph of the $Z$-function along the critical line