| L(s) = 1 | − 8.19e3·4-s − 1.06e6·9-s + 8.03e6·11-s + 5.03e7·16-s + 1.81e8·19-s − 4.14e9·29-s + 2.34e10·31-s + 8.70e9·36-s + 1.35e11·41-s − 6.58e10·44-s + 1.93e11·49-s + 8.66e9·59-s + 1.77e12·61-s − 2.74e11·64-s + 1.87e12·71-s − 1.48e12·76-s + 2.49e12·79-s + 8.47e11·81-s + 1.60e13·89-s − 8.54e12·99-s + 1.54e13·101-s − 6.36e13·109-s + 3.39e13·116-s + 3.27e13·121-s − 1.92e14·124-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | − 4-s − 2/3·9-s + 1.36·11-s + 3/4·16-s + 0.883·19-s − 1.29·29-s + 4.74·31-s + 2/3·36-s + 4.46·41-s − 1.36·44-s + 1.99·49-s + 0.0267·59-s + 4.41·61-s − 1/2·64-s + 1.73·71-s − 0.883·76-s + 1.15·79-s + 1/3·81-s + 3.41·89-s − 0.911·99-s + 1.45·101-s − 3.63·109-s + 1.29·116-s + 0.949·121-s − 4.74·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(14-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+13/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(7)\) |
\(\approx\) |
\(15.97682924\) |
| \(L(\frac12)\) |
\(\approx\) |
\(15.97682924\) |
| \(L(\frac{15}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.99836686116854831564813594527, −6.93333589180756930702386681301, −6.44714494730117862283413612717, −6.43590918556170575591975112259, −5.93562286423486722540774706201, −5.72681382527298886816322047678, −5.63832124447677858504592078197, −5.24881268173533652120366704001, −4.68794780875136183851663559114, −4.66862628131449137384718606455, −4.52363319841899838801805639757, −3.93637419285747787979236832127, −3.77569399235088099196215077472, −3.68051293230362102583589705443, −3.39012100718203461098929991099, −2.71356724354052112614662965930, −2.51422471142133244880960151341, −2.34884203777837643029533101410, −2.33421456445794665362536010490, −1.46955994353252120038359559771, −1.27453790677467582891995547495, −0.803215243148571459180002067595, −0.72534603805391579287241433576, −0.69850709885191978608748800460, −0.45357001245303728305617500777,
0.45357001245303728305617500777, 0.69850709885191978608748800460, 0.72534603805391579287241433576, 0.803215243148571459180002067595, 1.27453790677467582891995547495, 1.46955994353252120038359559771, 2.33421456445794665362536010490, 2.34884203777837643029533101410, 2.51422471142133244880960151341, 2.71356724354052112614662965930, 3.39012100718203461098929991099, 3.68051293230362102583589705443, 3.77569399235088099196215077472, 3.93637419285747787979236832127, 4.52363319841899838801805639757, 4.66862628131449137384718606455, 4.68794780875136183851663559114, 5.24881268173533652120366704001, 5.63832124447677858504592078197, 5.72681382527298886816322047678, 5.93562286423486722540774706201, 6.43590918556170575591975112259, 6.44714494730117862283413612717, 6.93333589180756930702386681301, 6.99836686116854831564813594527