Properties

Label 8-104e4-1.1-c5e4-0-0
Degree $8$
Conductor $116985856$
Sign $1$
Analytic cond. $77406.1$
Root an. cond. $4.08410$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11·3-s + 31·5-s + 39·7-s − 418·9-s + 340·11-s − 676·13-s − 341·15-s + 1.75e3·17-s + 2.00e3·19-s − 429·21-s + 6.79e3·23-s − 4.19e3·25-s + 9.71e3·27-s + 6.76e3·29-s + 1.86e4·31-s − 3.74e3·33-s + 1.20e3·35-s − 573·37-s + 7.43e3·39-s + 1.89e3·41-s + 2.83e4·43-s − 1.29e4·45-s + 2.16e4·47-s − 3.55e4·49-s − 1.93e4·51-s − 4.59e4·53-s + 1.05e4·55-s + ⋯
L(s)  = 1  − 0.705·3-s + 0.554·5-s + 0.300·7-s − 1.72·9-s + 0.847·11-s − 1.10·13-s − 0.391·15-s + 1.47·17-s + 1.27·19-s − 0.212·21-s + 2.67·23-s − 1.34·25-s + 2.56·27-s + 1.49·29-s + 3.48·31-s − 0.597·33-s + 0.166·35-s − 0.0688·37-s + 0.782·39-s + 0.175·41-s + 2.33·43-s − 0.953·45-s + 1.42·47-s − 2.11·49-s − 1.04·51-s − 2.24·53-s + 0.469·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(77406.1\)
Root analytic conductor: \(4.08410\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 13^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(4.833184963\)
\(L(\frac12)\) \(\approx\) \(4.833184963\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_1$ \( ( 1 + p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 + 11 T + 539 T^{2} + 808 T^{3} + 39808 p T^{4} + 808 p^{5} T^{5} + 539 p^{10} T^{6} + 11 p^{15} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 31 T + 5153 T^{2} - 252422 T^{3} + 22858118 T^{4} - 252422 p^{5} T^{5} + 5153 p^{10} T^{6} - 31 p^{15} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 39 T + 37057 T^{2} + 1509244 T^{3} + 574546398 T^{4} + 1509244 p^{5} T^{5} + 37057 p^{10} T^{6} - 39 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 340 T + 127772 T^{2} + 3699508 p T^{3} - 2539680526 p T^{4} + 3699508 p^{6} T^{5} + 127772 p^{10} T^{6} - 340 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 1757 T + 3521321 T^{2} - 4384174254 T^{3} + 7201578383694 T^{4} - 4384174254 p^{5} T^{5} + 3521321 p^{10} T^{6} - 1757 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 2000 T + 1315204 T^{2} - 5123411728 T^{3} + 16378456307222 T^{4} - 5123411728 p^{5} T^{5} + 1315204 p^{10} T^{6} - 2000 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 6796 T + 37313132 T^{2} - 124874503804 T^{3} + 376774335025606 T^{4} - 124874503804 p^{5} T^{5} + 37313132 p^{10} T^{6} - 6796 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 6768 T + 44087996 T^{2} - 145395725328 T^{3} + 820460284261782 T^{4} - 145395725328 p^{5} T^{5} + 44087996 p^{10} T^{6} - 6768 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 18638 T + 155809588 T^{2} - 751376049398 T^{3} + 3287012745889942 T^{4} - 751376049398 p^{5} T^{5} + 155809588 p^{10} T^{6} - 18638 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 573 T + 239640937 T^{2} + 202243860778 T^{3} + 23587529015810070 T^{4} + 202243860778 p^{5} T^{5} + 239640937 p^{10} T^{6} + 573 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 1890 T + 311989748 T^{2} - 958041784790 T^{3} + 46445767927334790 T^{4} - 958041784790 p^{5} T^{5} + 311989748 p^{10} T^{6} - 1890 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 28327 T + 616834087 T^{2} - 7694590240592 T^{3} + 104664597506136140 T^{4} - 7694590240592 p^{5} T^{5} + 616834087 p^{10} T^{6} - 28327 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 21603 T + 666176561 T^{2} - 10471292070516 T^{3} + 201019507301163414 T^{4} - 10471292070516 p^{5} T^{5} + 666176561 p^{10} T^{6} - 21603 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 45950 T + 1702757516 T^{2} + 47289854346690 T^{3} + 1021571292731542854 T^{4} + 47289854346690 p^{5} T^{5} + 1702757516 p^{10} T^{6} + 45950 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 916 T + 2171389052 T^{2} + 8148340134204 T^{3} + 2041156776912096870 T^{4} + 8148340134204 p^{5} T^{5} + 2171389052 p^{10} T^{6} - 916 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 55730 T + 67085956 p T^{2} + 139009698415134 T^{3} + 5445275958006059382 T^{4} + 139009698415134 p^{5} T^{5} + 67085956 p^{11} T^{6} + 55730 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 7736 T + 2054018164 T^{2} - 34631039929752 T^{3} + 3527055037627735350 T^{4} - 34631039929752 p^{5} T^{5} + 2054018164 p^{10} T^{6} - 7736 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 25229 T + 5569425785 T^{2} - 91697921781076 T^{3} + 13582162611069378350 T^{4} - 91697921781076 p^{5} T^{5} + 5569425785 p^{10} T^{6} - 25229 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 82484 T + 3610412740 T^{2} - 27086603654356 T^{3} - 4146949427050770410 T^{4} - 27086603654356 p^{5} T^{5} + 3610412740 p^{10} T^{6} + 82484 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 4936 T + 3136547068 T^{2} - 276560357630760 T^{3} + 2205991352982184134 T^{4} - 276560357630760 p^{5} T^{5} + 3136547068 p^{10} T^{6} - 4936 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 119782 T + 16058583212 T^{2} + 1197963265006102 T^{3} + 91320962773018703350 T^{4} + 1197963265006102 p^{5} T^{5} + 16058583212 p^{10} T^{6} + 119782 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 153492 T + 23233599524 T^{2} + 2201629256787724 T^{3} + \)\(20\!\cdots\!50\)\( T^{4} + 2201629256787724 p^{5} T^{5} + 23233599524 p^{10} T^{6} + 153492 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 13364 T + 15673117972 T^{2} + 697855089119668 T^{3} + \)\(10\!\cdots\!54\)\( T^{4} + 697855089119668 p^{5} T^{5} + 15673117972 p^{10} T^{6} - 13364 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.500017592548858279081245261854, −8.748879440181355342906600256206, −8.558881187376653179951876799243, −8.448867519018987304879489360813, −8.055663961024237379540417212315, −7.61041296022921543131942152476, −7.47273005783430297185542931391, −7.00572223467672713931865358491, −6.75214752492569671960650458136, −6.31479683332970558467336397041, −5.99273827745538074581822148034, −5.80626515683528311952224608371, −5.62384487381965740329301423563, −4.95946092242696162387648168688, −4.91605388679127448323154657478, −4.49003310697984775146860500127, −4.29867386731191954114260560200, −3.21975412304946859972678784268, −3.05561177539974053952037163489, −2.80456180685017164886156491613, −2.69935608660979540425859879227, −1.61385203066652730547914183717, −1.25669546798601619064857947457, −0.67555407996891868984899702490, −0.59739545213748874918380381536, 0.59739545213748874918380381536, 0.67555407996891868984899702490, 1.25669546798601619064857947457, 1.61385203066652730547914183717, 2.69935608660979540425859879227, 2.80456180685017164886156491613, 3.05561177539974053952037163489, 3.21975412304946859972678784268, 4.29867386731191954114260560200, 4.49003310697984775146860500127, 4.91605388679127448323154657478, 4.95946092242696162387648168688, 5.62384487381965740329301423563, 5.80626515683528311952224608371, 5.99273827745538074581822148034, 6.31479683332970558467336397041, 6.75214752492569671960650458136, 7.00572223467672713931865358491, 7.47273005783430297185542931391, 7.61041296022921543131942152476, 8.055663961024237379540417212315, 8.448867519018987304879489360813, 8.558881187376653179951876799243, 8.748879440181355342906600256206, 9.500017592548858279081245261854

Graph of the $Z$-function along the critical line