| L(s) = 1 | + 27·3-s + 54·5-s − 84·7-s + 486·9-s − 876·11-s + 507·13-s + 1.45e3·15-s + 102·17-s + 16·19-s − 2.26e3·21-s − 3.91e3·25-s + 7.29e3·27-s + 9.66e3·29-s + 1.01e4·31-s − 2.36e4·33-s − 4.53e3·35-s + 1.18e4·37-s + 1.36e4·39-s + 3.54e4·41-s − 2.78e3·43-s + 2.62e4·45-s − 2.57e4·47-s − 2.03e3·49-s + 2.75e3·51-s + 3.67e4·53-s − 4.73e4·55-s + 432·57-s + ⋯ |
| L(s) = 1 | + 1.73·3-s + 0.965·5-s − 0.647·7-s + 2·9-s − 2.18·11-s + 0.832·13-s + 1.67·15-s + 0.0856·17-s + 0.0101·19-s − 1.12·21-s − 1.25·25-s + 1.92·27-s + 2.13·29-s + 1.90·31-s − 3.78·33-s − 0.625·35-s + 1.41·37-s + 1.44·39-s + 3.29·41-s − 0.229·43-s + 1.93·45-s − 1.69·47-s − 0.121·49-s + 0.148·51-s + 1.79·53-s − 2.10·55-s + 0.0176·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 13^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(20.22806205\) |
| \(L(\frac12)\) |
\(\approx\) |
\(20.22806205\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
|---|
| bad | 2 | | \( 1 \) |
| 3 | $C_1$ | \( ( 1 - p^{2} T )^{3} \) |
| 13 | $C_1$ | \( ( 1 - p^{2} T )^{3} \) |
| good | 5 | $S_4\times C_2$ | \( 1 - 54 T + 6827 T^{2} - 319908 T^{3} + 6827 p^{5} T^{4} - 54 p^{10} T^{5} + p^{15} T^{6} \) |
| 7 | $S_4\times C_2$ | \( 1 + 12 p T + 1299 p T^{2} - 1180456 T^{3} + 1299 p^{6} T^{4} + 12 p^{11} T^{5} + p^{15} T^{6} \) |
| 11 | $S_4\times C_2$ | \( 1 + 876 T + 61507 p T^{2} + 2436552 p^{2} T^{3} + 61507 p^{6} T^{4} + 876 p^{10} T^{5} + p^{15} T^{6} \) |
| 17 | $S_4\times C_2$ | \( 1 - 6 p T - 8065 T^{2} + 1596294636 T^{3} - 8065 p^{5} T^{4} - 6 p^{11} T^{5} + p^{15} T^{6} \) |
| 19 | $S_4\times C_2$ | \( 1 - 16 T + 3413289 T^{2} - 760972640 T^{3} + 3413289 p^{5} T^{4} - 16 p^{10} T^{5} + p^{15} T^{6} \) |
| 23 | $S_4\times C_2$ | \( 1 + 2842341 T^{2} + 25559359488 T^{3} + 2842341 p^{5} T^{4} + p^{15} T^{6} \) |
| 29 | $S_4\times C_2$ | \( 1 - 9666 T + 67970099 T^{2} - 305609767116 T^{3} + 67970099 p^{5} T^{4} - 9666 p^{10} T^{5} + p^{15} T^{6} \) |
| 31 | $S_4\times C_2$ | \( 1 - 10196 T + 72148205 T^{2} - 329715654296 T^{3} + 72148205 p^{5} T^{4} - 10196 p^{10} T^{5} + p^{15} T^{6} \) |
| 37 | $S_4\times C_2$ | \( 1 - 11818 T + 212374475 T^{2} - 1632313776796 T^{3} + 212374475 p^{5} T^{4} - 11818 p^{10} T^{5} + p^{15} T^{6} \) |
| 41 | $S_4\times C_2$ | \( 1 - 35490 T + 761247303 T^{2} - 9805740782844 T^{3} + 761247303 p^{5} T^{4} - 35490 p^{10} T^{5} + p^{15} T^{6} \) |
| 43 | $S_4\times C_2$ | \( 1 + 2780 T + 372887649 T^{2} + 858673638568 T^{3} + 372887649 p^{5} T^{4} + 2780 p^{10} T^{5} + p^{15} T^{6} \) |
| 47 | $S_4\times C_2$ | \( 1 + 25728 T + 906478125 T^{2} + 12412105377792 T^{3} + 906478125 p^{5} T^{4} + 25728 p^{10} T^{5} + p^{15} T^{6} \) |
| 53 | $S_4\times C_2$ | \( 1 - 36786 T + 360217563 T^{2} + 2682437852724 T^{3} + 360217563 p^{5} T^{4} - 36786 p^{10} T^{5} + p^{15} T^{6} \) |
| 59 | $S_4\times C_2$ | \( 1 - 27516 T + 1543859889 T^{2} - 22695451892328 T^{3} + 1543859889 p^{5} T^{4} - 27516 p^{10} T^{5} + p^{15} T^{6} \) |
| 61 | $S_4\times C_2$ | \( 1 - 754 p T + 2632594739 T^{2} - 76087228896508 T^{3} + 2632594739 p^{5} T^{4} - 754 p^{11} T^{5} + p^{15} T^{6} \) |
| 67 | $S_4\times C_2$ | \( 1 - 42536 T + 3378302777 T^{2} - 103907028844016 T^{3} + 3378302777 p^{5} T^{4} - 42536 p^{10} T^{5} + p^{15} T^{6} \) |
| 71 | $S_4\times C_2$ | \( 1 - 54432 T + 5248808853 T^{2} - 171838859617728 T^{3} + 5248808853 p^{5} T^{4} - 54432 p^{10} T^{5} + p^{15} T^{6} \) |
| 73 | $S_4\times C_2$ | \( 1 - 27846 T + 4499033031 T^{2} - 131217557166452 T^{3} + 4499033031 p^{5} T^{4} - 27846 p^{10} T^{5} + p^{15} T^{6} \) |
| 79 | $S_4\times C_2$ | \( 1 - 80568 T + 8027152749 T^{2} - 375224404431760 T^{3} + 8027152749 p^{5} T^{4} - 80568 p^{10} T^{5} + p^{15} T^{6} \) |
| 83 | $S_4\times C_2$ | \( 1 + 24012 T + 1064674457 T^{2} - 98965398905976 T^{3} + 1064674457 p^{5} T^{4} + 24012 p^{10} T^{5} + p^{15} T^{6} \) |
| 89 | $S_4\times C_2$ | \( 1 - 117450 T + 20453502647 T^{2} - 1326790009424556 T^{3} + 20453502647 p^{5} T^{4} - 117450 p^{10} T^{5} + p^{15} T^{6} \) |
| 97 | $S_4\times C_2$ | \( 1 + 20930 T + 21142486607 T^{2} + 452696635744412 T^{3} + 21142486607 p^{5} T^{4} + 20930 p^{10} T^{5} + p^{15} T^{6} \) |
| show more | | |
| show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.578295803002571725652208863259, −8.378764887855950169310935047772, −8.066761308548517450234905049042, −7.923591124770994513888189659037, −7.64210175420385960591452895118, −7.39329811986641851338364722122, −6.86128270965077973696608550181, −6.43369494193725334487730861939, −6.27607571452129085956227158919, −6.13106153372437949577721500338, −5.50663980506418905469517693803, −5.33578369533347663109905291754, −4.90684024177538826607161273731, −4.45299749135448531007145470204, −4.23681725318260795718280439817, −3.82313985554049682000704098299, −3.30543920306804418571566984359, −3.04261160102885615687154072585, −2.79082975054415023070699072984, −2.25417232854210174975124078679, −2.11838423362450624722308330521, −2.06211165289824993697226611755, −0.864611366487280071582463196077, −0.795268011936958110778888567029, −0.66517392766591250838680078499,
0.66517392766591250838680078499, 0.795268011936958110778888567029, 0.864611366487280071582463196077, 2.06211165289824993697226611755, 2.11838423362450624722308330521, 2.25417232854210174975124078679, 2.79082975054415023070699072984, 3.04261160102885615687154072585, 3.30543920306804418571566984359, 3.82313985554049682000704098299, 4.23681725318260795718280439817, 4.45299749135448531007145470204, 4.90684024177538826607161273731, 5.33578369533347663109905291754, 5.50663980506418905469517693803, 6.13106153372437949577721500338, 6.27607571452129085956227158919, 6.43369494193725334487730861939, 6.86128270965077973696608550181, 7.39329811986641851338364722122, 7.64210175420385960591452895118, 7.923591124770994513888189659037, 8.066761308548517450234905049042, 8.378764887855950169310935047772, 8.578295803002571725652208863259