Properties

Label 624.6.a.t.1.2
Level $624$
Weight $6$
Character 624.1
Self dual yes
Analytic conductor $100.080$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,6,Mod(1,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,27,0,54,0,-84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.079503563\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.125308.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 55x - 78 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.47673\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +6.18613 q^{5} -190.614 q^{7} +81.0000 q^{9} -141.200 q^{11} +169.000 q^{13} +55.6751 q^{15} +1854.72 q^{17} +2091.51 q^{19} -1715.52 q^{21} -4682.44 q^{23} -3086.73 q^{25} +729.000 q^{27} -2483.38 q^{29} -4629.17 q^{31} -1270.80 q^{33} -1179.16 q^{35} +1013.68 q^{37} +1521.00 q^{39} +14283.8 q^{41} +625.799 q^{43} +501.076 q^{45} -9057.59 q^{47} +19526.5 q^{49} +16692.5 q^{51} +31642.2 q^{53} -873.483 q^{55} +18823.6 q^{57} +25952.5 q^{59} -4735.49 q^{61} -15439.7 q^{63} +1045.46 q^{65} -19717.3 q^{67} -42142.0 q^{69} +27169.0 q^{71} -13688.2 q^{73} -27780.6 q^{75} +26914.7 q^{77} +75281.6 q^{79} +6561.00 q^{81} +104809. q^{83} +11473.5 q^{85} -22350.4 q^{87} +4771.10 q^{89} -32213.7 q^{91} -41662.5 q^{93} +12938.4 q^{95} +34879.0 q^{97} -11437.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 27 q^{3} + 54 q^{5} - 84 q^{7} + 243 q^{9} - 876 q^{11} + 507 q^{13} + 486 q^{15} + 102 q^{17} + 16 q^{19} - 756 q^{21} - 1363 q^{25} + 2187 q^{27} + 9666 q^{29} + 10196 q^{31} - 7884 q^{33} - 16680 q^{35}+ \cdots - 70956 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 6.18613 0.110661 0.0553304 0.998468i \(-0.482379\pi\)
0.0553304 + 0.998468i \(0.482379\pi\)
\(6\) 0 0
\(7\) −190.614 −1.47031 −0.735154 0.677900i \(-0.762890\pi\)
−0.735154 + 0.677900i \(0.762890\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −141.200 −0.351847 −0.175924 0.984404i \(-0.556291\pi\)
−0.175924 + 0.984404i \(0.556291\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 55.6751 0.0638900
\(16\) 0 0
\(17\) 1854.72 1.55652 0.778262 0.627940i \(-0.216102\pi\)
0.778262 + 0.627940i \(0.216102\pi\)
\(18\) 0 0
\(19\) 2091.51 1.32916 0.664579 0.747218i \(-0.268611\pi\)
0.664579 + 0.747218i \(0.268611\pi\)
\(20\) 0 0
\(21\) −1715.52 −0.848883
\(22\) 0 0
\(23\) −4682.44 −1.84566 −0.922832 0.385203i \(-0.874132\pi\)
−0.922832 + 0.385203i \(0.874132\pi\)
\(24\) 0 0
\(25\) −3086.73 −0.987754
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −2483.38 −0.548337 −0.274169 0.961682i \(-0.588403\pi\)
−0.274169 + 0.961682i \(0.588403\pi\)
\(30\) 0 0
\(31\) −4629.17 −0.865164 −0.432582 0.901595i \(-0.642397\pi\)
−0.432582 + 0.901595i \(0.642397\pi\)
\(32\) 0 0
\(33\) −1270.80 −0.203139
\(34\) 0 0
\(35\) −1179.16 −0.162706
\(36\) 0 0
\(37\) 1013.68 0.121730 0.0608650 0.998146i \(-0.480614\pi\)
0.0608650 + 0.998146i \(0.480614\pi\)
\(38\) 0 0
\(39\) 1521.00 0.160128
\(40\) 0 0
\(41\) 14283.8 1.32704 0.663520 0.748159i \(-0.269062\pi\)
0.663520 + 0.748159i \(0.269062\pi\)
\(42\) 0 0
\(43\) 625.799 0.0516135 0.0258068 0.999667i \(-0.491785\pi\)
0.0258068 + 0.999667i \(0.491785\pi\)
\(44\) 0 0
\(45\) 501.076 0.0368869
\(46\) 0 0
\(47\) −9057.59 −0.598092 −0.299046 0.954239i \(-0.596668\pi\)
−0.299046 + 0.954239i \(0.596668\pi\)
\(48\) 0 0
\(49\) 19526.5 1.16181
\(50\) 0 0
\(51\) 16692.5 0.898659
\(52\) 0 0
\(53\) 31642.2 1.54731 0.773654 0.633608i \(-0.218427\pi\)
0.773654 + 0.633608i \(0.218427\pi\)
\(54\) 0 0
\(55\) −873.483 −0.0389357
\(56\) 0 0
\(57\) 18823.6 0.767390
\(58\) 0 0
\(59\) 25952.5 0.970618 0.485309 0.874343i \(-0.338707\pi\)
0.485309 + 0.874343i \(0.338707\pi\)
\(60\) 0 0
\(61\) −4735.49 −0.162945 −0.0814724 0.996676i \(-0.525962\pi\)
−0.0814724 + 0.996676i \(0.525962\pi\)
\(62\) 0 0
\(63\) −15439.7 −0.490103
\(64\) 0 0
\(65\) 1045.46 0.0306918
\(66\) 0 0
\(67\) −19717.3 −0.536611 −0.268306 0.963334i \(-0.586464\pi\)
−0.268306 + 0.963334i \(0.586464\pi\)
\(68\) 0 0
\(69\) −42142.0 −1.06559
\(70\) 0 0
\(71\) 27169.0 0.639629 0.319815 0.947480i \(-0.396379\pi\)
0.319815 + 0.947480i \(0.396379\pi\)
\(72\) 0 0
\(73\) −13688.2 −0.300634 −0.150317 0.988638i \(-0.548029\pi\)
−0.150317 + 0.988638i \(0.548029\pi\)
\(74\) 0 0
\(75\) −27780.6 −0.570280
\(76\) 0 0
\(77\) 26914.7 0.517324
\(78\) 0 0
\(79\) 75281.6 1.35713 0.678564 0.734541i \(-0.262603\pi\)
0.678564 + 0.734541i \(0.262603\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 104809. 1.66995 0.834974 0.550289i \(-0.185483\pi\)
0.834974 + 0.550289i \(0.185483\pi\)
\(84\) 0 0
\(85\) 11473.5 0.172246
\(86\) 0 0
\(87\) −22350.4 −0.316583
\(88\) 0 0
\(89\) 4771.10 0.0638475 0.0319237 0.999490i \(-0.489837\pi\)
0.0319237 + 0.999490i \(0.489837\pi\)
\(90\) 0 0
\(91\) −32213.7 −0.407790
\(92\) 0 0
\(93\) −41662.5 −0.499503
\(94\) 0 0
\(95\) 12938.4 0.147086
\(96\) 0 0
\(97\) 34879.0 0.376387 0.188194 0.982132i \(-0.439737\pi\)
0.188194 + 0.982132i \(0.439737\pi\)
\(98\) 0 0
\(99\) −11437.2 −0.117282
\(100\) 0 0
\(101\) 123059. 1.20036 0.600179 0.799865i \(-0.295096\pi\)
0.600179 + 0.799865i \(0.295096\pi\)
\(102\) 0 0
\(103\) 70651.4 0.656187 0.328094 0.944645i \(-0.393594\pi\)
0.328094 + 0.944645i \(0.393594\pi\)
\(104\) 0 0
\(105\) −10612.4 −0.0939381
\(106\) 0 0
\(107\) 51075.5 0.431274 0.215637 0.976474i \(-0.430817\pi\)
0.215637 + 0.976474i \(0.430817\pi\)
\(108\) 0 0
\(109\) 172935. 1.39418 0.697088 0.716985i \(-0.254479\pi\)
0.697088 + 0.716985i \(0.254479\pi\)
\(110\) 0 0
\(111\) 9123.15 0.0702809
\(112\) 0 0
\(113\) 15198.7 0.111972 0.0559860 0.998432i \(-0.482170\pi\)
0.0559860 + 0.998432i \(0.482170\pi\)
\(114\) 0 0
\(115\) −28966.2 −0.204243
\(116\) 0 0
\(117\) 13689.0 0.0924500
\(118\) 0 0
\(119\) −353534. −2.28857
\(120\) 0 0
\(121\) −141113. −0.876204
\(122\) 0 0
\(123\) 128554. 0.766167
\(124\) 0 0
\(125\) −38426.6 −0.219966
\(126\) 0 0
\(127\) −82441.7 −0.453563 −0.226781 0.973946i \(-0.572820\pi\)
−0.226781 + 0.973946i \(0.572820\pi\)
\(128\) 0 0
\(129\) 5632.19 0.0297991
\(130\) 0 0
\(131\) 301955. 1.53732 0.768658 0.639660i \(-0.220925\pi\)
0.768658 + 0.639660i \(0.220925\pi\)
\(132\) 0 0
\(133\) −398671. −1.95427
\(134\) 0 0
\(135\) 4509.69 0.0212967
\(136\) 0 0
\(137\) −387921. −1.76580 −0.882900 0.469562i \(-0.844412\pi\)
−0.882900 + 0.469562i \(0.844412\pi\)
\(138\) 0 0
\(139\) 215864. 0.947640 0.473820 0.880622i \(-0.342875\pi\)
0.473820 + 0.880622i \(0.342875\pi\)
\(140\) 0 0
\(141\) −81518.3 −0.345309
\(142\) 0 0
\(143\) −23862.9 −0.0975849
\(144\) 0 0
\(145\) −15362.5 −0.0606794
\(146\) 0 0
\(147\) 175739. 0.670770
\(148\) 0 0
\(149\) 306915. 1.13254 0.566268 0.824221i \(-0.308387\pi\)
0.566268 + 0.824221i \(0.308387\pi\)
\(150\) 0 0
\(151\) −188241. −0.671851 −0.335925 0.941889i \(-0.609049\pi\)
−0.335925 + 0.941889i \(0.609049\pi\)
\(152\) 0 0
\(153\) 150232. 0.518841
\(154\) 0 0
\(155\) −28636.6 −0.0957398
\(156\) 0 0
\(157\) 5384.05 0.0174325 0.00871626 0.999962i \(-0.497225\pi\)
0.00871626 + 0.999962i \(0.497225\pi\)
\(158\) 0 0
\(159\) 284780. 0.893339
\(160\) 0 0
\(161\) 892536. 2.71370
\(162\) 0 0
\(163\) 650379. 1.91733 0.958666 0.284533i \(-0.0918385\pi\)
0.958666 + 0.284533i \(0.0918385\pi\)
\(164\) 0 0
\(165\) −7861.35 −0.0224795
\(166\) 0 0
\(167\) −235868. −0.654452 −0.327226 0.944946i \(-0.606114\pi\)
−0.327226 + 0.944946i \(0.606114\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 169413. 0.443053
\(172\) 0 0
\(173\) 332282. 0.844096 0.422048 0.906574i \(-0.361311\pi\)
0.422048 + 0.906574i \(0.361311\pi\)
\(174\) 0 0
\(175\) 588373. 1.45230
\(176\) 0 0
\(177\) 233572. 0.560387
\(178\) 0 0
\(179\) −612970. −1.42990 −0.714952 0.699174i \(-0.753551\pi\)
−0.714952 + 0.699174i \(0.753551\pi\)
\(180\) 0 0
\(181\) 138097. 0.313319 0.156659 0.987653i \(-0.449927\pi\)
0.156659 + 0.987653i \(0.449927\pi\)
\(182\) 0 0
\(183\) −42619.4 −0.0940762
\(184\) 0 0
\(185\) 6270.77 0.0134707
\(186\) 0 0
\(187\) −261887. −0.547658
\(188\) 0 0
\(189\) −138957. −0.282961
\(190\) 0 0
\(191\) −94267.9 −0.186974 −0.0934868 0.995621i \(-0.529801\pi\)
−0.0934868 + 0.995621i \(0.529801\pi\)
\(192\) 0 0
\(193\) 1.03276e6 1.99574 0.997870 0.0652281i \(-0.0207775\pi\)
0.997870 + 0.0652281i \(0.0207775\pi\)
\(194\) 0 0
\(195\) 9409.10 0.0177199
\(196\) 0 0
\(197\) −157331. −0.288834 −0.144417 0.989517i \(-0.546131\pi\)
−0.144417 + 0.989517i \(0.546131\pi\)
\(198\) 0 0
\(199\) −510479. −0.913788 −0.456894 0.889521i \(-0.651038\pi\)
−0.456894 + 0.889521i \(0.651038\pi\)
\(200\) 0 0
\(201\) −177455. −0.309813
\(202\) 0 0
\(203\) 473365. 0.806225
\(204\) 0 0
\(205\) 88361.4 0.146851
\(206\) 0 0
\(207\) −379278. −0.615221
\(208\) 0 0
\(209\) −295322. −0.467660
\(210\) 0 0
\(211\) 442016. 0.683490 0.341745 0.939793i \(-0.388982\pi\)
0.341745 + 0.939793i \(0.388982\pi\)
\(212\) 0 0
\(213\) 244521. 0.369290
\(214\) 0 0
\(215\) 3871.27 0.00571160
\(216\) 0 0
\(217\) 882382. 1.27206
\(218\) 0 0
\(219\) −123194. −0.173571
\(220\) 0 0
\(221\) 313447. 0.431702
\(222\) 0 0
\(223\) 972760. 1.30992 0.654958 0.755665i \(-0.272686\pi\)
0.654958 + 0.755665i \(0.272686\pi\)
\(224\) 0 0
\(225\) −250025. −0.329251
\(226\) 0 0
\(227\) −257972. −0.332283 −0.166141 0.986102i \(-0.553131\pi\)
−0.166141 + 0.986102i \(0.553131\pi\)
\(228\) 0 0
\(229\) 133806. 0.168612 0.0843060 0.996440i \(-0.473133\pi\)
0.0843060 + 0.996440i \(0.473133\pi\)
\(230\) 0 0
\(231\) 242232. 0.298677
\(232\) 0 0
\(233\) −1.62143e6 −1.95663 −0.978317 0.207112i \(-0.933594\pi\)
−0.978317 + 0.207112i \(0.933594\pi\)
\(234\) 0 0
\(235\) −56031.4 −0.0661853
\(236\) 0 0
\(237\) 677534. 0.783538
\(238\) 0 0
\(239\) 811498. 0.918952 0.459476 0.888190i \(-0.348037\pi\)
0.459476 + 0.888190i \(0.348037\pi\)
\(240\) 0 0
\(241\) 252994. 0.280587 0.140294 0.990110i \(-0.455195\pi\)
0.140294 + 0.990110i \(0.455195\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 120793. 0.128567
\(246\) 0 0
\(247\) 353466. 0.368642
\(248\) 0 0
\(249\) 943280. 0.964145
\(250\) 0 0
\(251\) −959107. −0.960910 −0.480455 0.877019i \(-0.659529\pi\)
−0.480455 + 0.877019i \(0.659529\pi\)
\(252\) 0 0
\(253\) 661162. 0.649392
\(254\) 0 0
\(255\) 103262. 0.0994464
\(256\) 0 0
\(257\) −424311. −0.400730 −0.200365 0.979721i \(-0.564213\pi\)
−0.200365 + 0.979721i \(0.564213\pi\)
\(258\) 0 0
\(259\) −193222. −0.178981
\(260\) 0 0
\(261\) −201153. −0.182779
\(262\) 0 0
\(263\) 1.63733e6 1.45964 0.729822 0.683638i \(-0.239603\pi\)
0.729822 + 0.683638i \(0.239603\pi\)
\(264\) 0 0
\(265\) 195743. 0.171226
\(266\) 0 0
\(267\) 42939.9 0.0368624
\(268\) 0 0
\(269\) −1.32752e6 −1.11857 −0.559283 0.828977i \(-0.688923\pi\)
−0.559283 + 0.828977i \(0.688923\pi\)
\(270\) 0 0
\(271\) −105128. −0.0869547 −0.0434774 0.999054i \(-0.513844\pi\)
−0.0434774 + 0.999054i \(0.513844\pi\)
\(272\) 0 0
\(273\) −289923. −0.235438
\(274\) 0 0
\(275\) 435848. 0.347539
\(276\) 0 0
\(277\) −1.28791e6 −1.00852 −0.504260 0.863552i \(-0.668235\pi\)
−0.504260 + 0.863552i \(0.668235\pi\)
\(278\) 0 0
\(279\) −374963. −0.288388
\(280\) 0 0
\(281\) −297907. −0.225068 −0.112534 0.993648i \(-0.535897\pi\)
−0.112534 + 0.993648i \(0.535897\pi\)
\(282\) 0 0
\(283\) 925425. 0.686871 0.343435 0.939176i \(-0.388409\pi\)
0.343435 + 0.939176i \(0.388409\pi\)
\(284\) 0 0
\(285\) 116445. 0.0849199
\(286\) 0 0
\(287\) −2.72268e6 −1.95116
\(288\) 0 0
\(289\) 2.02012e6 1.42277
\(290\) 0 0
\(291\) 313911. 0.217307
\(292\) 0 0
\(293\) 2.14512e6 1.45976 0.729880 0.683575i \(-0.239576\pi\)
0.729880 + 0.683575i \(0.239576\pi\)
\(294\) 0 0
\(295\) 160545. 0.107409
\(296\) 0 0
\(297\) −102935. −0.0677130
\(298\) 0 0
\(299\) −791332. −0.511895
\(300\) 0 0
\(301\) −119286. −0.0758879
\(302\) 0 0
\(303\) 1.10753e6 0.693028
\(304\) 0 0
\(305\) −29294.3 −0.0180316
\(306\) 0 0
\(307\) −2.53446e6 −1.53475 −0.767377 0.641196i \(-0.778438\pi\)
−0.767377 + 0.641196i \(0.778438\pi\)
\(308\) 0 0
\(309\) 635863. 0.378850
\(310\) 0 0
\(311\) 1.40549e6 0.824001 0.412000 0.911184i \(-0.364830\pi\)
0.412000 + 0.911184i \(0.364830\pi\)
\(312\) 0 0
\(313\) −3.05827e6 −1.76447 −0.882236 0.470808i \(-0.843962\pi\)
−0.882236 + 0.470808i \(0.843962\pi\)
\(314\) 0 0
\(315\) −95511.9 −0.0542352
\(316\) 0 0
\(317\) 543899. 0.303997 0.151999 0.988381i \(-0.451429\pi\)
0.151999 + 0.988381i \(0.451429\pi\)
\(318\) 0 0
\(319\) 350654. 0.192931
\(320\) 0 0
\(321\) 459679. 0.248996
\(322\) 0 0
\(323\) 3.87917e6 2.06887
\(324\) 0 0
\(325\) −521658. −0.273954
\(326\) 0 0
\(327\) 1.55642e6 0.804928
\(328\) 0 0
\(329\) 1.72650e6 0.879380
\(330\) 0 0
\(331\) 3.20780e6 1.60930 0.804650 0.593749i \(-0.202353\pi\)
0.804650 + 0.593749i \(0.202353\pi\)
\(332\) 0 0
\(333\) 82108.3 0.0405767
\(334\) 0 0
\(335\) −121974. −0.0593818
\(336\) 0 0
\(337\) 1.89691e6 0.909855 0.454928 0.890528i \(-0.349665\pi\)
0.454928 + 0.890528i \(0.349665\pi\)
\(338\) 0 0
\(339\) 136788. 0.0646471
\(340\) 0 0
\(341\) 653640. 0.304406
\(342\) 0 0
\(343\) −518376. −0.237908
\(344\) 0 0
\(345\) −260696. −0.117920
\(346\) 0 0
\(347\) 1.45684e6 0.649512 0.324756 0.945798i \(-0.394718\pi\)
0.324756 + 0.945798i \(0.394718\pi\)
\(348\) 0 0
\(349\) −3.62193e6 −1.59176 −0.795878 0.605457i \(-0.792990\pi\)
−0.795878 + 0.605457i \(0.792990\pi\)
\(350\) 0 0
\(351\) 123201. 0.0533761
\(352\) 0 0
\(353\) −1.74392e6 −0.744888 −0.372444 0.928055i \(-0.621480\pi\)
−0.372444 + 0.928055i \(0.621480\pi\)
\(354\) 0 0
\(355\) 168071. 0.0707819
\(356\) 0 0
\(357\) −3.18181e6 −1.32131
\(358\) 0 0
\(359\) 2.52775e6 1.03514 0.517569 0.855641i \(-0.326837\pi\)
0.517569 + 0.855641i \(0.326837\pi\)
\(360\) 0 0
\(361\) 1.89833e6 0.766661
\(362\) 0 0
\(363\) −1.27002e6 −0.505876
\(364\) 0 0
\(365\) −84676.8 −0.0332684
\(366\) 0 0
\(367\) −1.53298e6 −0.594116 −0.297058 0.954859i \(-0.596006\pi\)
−0.297058 + 0.954859i \(0.596006\pi\)
\(368\) 0 0
\(369\) 1.15699e6 0.442347
\(370\) 0 0
\(371\) −6.03143e6 −2.27502
\(372\) 0 0
\(373\) −331711. −0.123449 −0.0617246 0.998093i \(-0.519660\pi\)
−0.0617246 + 0.998093i \(0.519660\pi\)
\(374\) 0 0
\(375\) −345839. −0.126998
\(376\) 0 0
\(377\) −419691. −0.152081
\(378\) 0 0
\(379\) 3.12182e6 1.11638 0.558188 0.829715i \(-0.311497\pi\)
0.558188 + 0.829715i \(0.311497\pi\)
\(380\) 0 0
\(381\) −741975. −0.261865
\(382\) 0 0
\(383\) −2.43441e6 −0.848003 −0.424001 0.905662i \(-0.639375\pi\)
−0.424001 + 0.905662i \(0.639375\pi\)
\(384\) 0 0
\(385\) 166498. 0.0572475
\(386\) 0 0
\(387\) 50689.7 0.0172045
\(388\) 0 0
\(389\) −5.21717e6 −1.74808 −0.874039 0.485857i \(-0.838508\pi\)
−0.874039 + 0.485857i \(0.838508\pi\)
\(390\) 0 0
\(391\) −8.68461e6 −2.87282
\(392\) 0 0
\(393\) 2.71759e6 0.887570
\(394\) 0 0
\(395\) 465701. 0.150181
\(396\) 0 0
\(397\) 4.19247e6 1.33504 0.667519 0.744593i \(-0.267356\pi\)
0.667519 + 0.744593i \(0.267356\pi\)
\(398\) 0 0
\(399\) −3.58804e6 −1.12830
\(400\) 0 0
\(401\) 730988. 0.227012 0.113506 0.993537i \(-0.463792\pi\)
0.113506 + 0.993537i \(0.463792\pi\)
\(402\) 0 0
\(403\) −782329. −0.239953
\(404\) 0 0
\(405\) 40587.2 0.0122956
\(406\) 0 0
\(407\) −143132. −0.0428304
\(408\) 0 0
\(409\) 5.26806e6 1.55719 0.778596 0.627525i \(-0.215932\pi\)
0.778596 + 0.627525i \(0.215932\pi\)
\(410\) 0 0
\(411\) −3.49129e6 −1.01948
\(412\) 0 0
\(413\) −4.94689e6 −1.42711
\(414\) 0 0
\(415\) 648361. 0.184798
\(416\) 0 0
\(417\) 1.94278e6 0.547120
\(418\) 0 0
\(419\) −2.12251e6 −0.590630 −0.295315 0.955400i \(-0.595425\pi\)
−0.295315 + 0.955400i \(0.595425\pi\)
\(420\) 0 0
\(421\) −2.85481e6 −0.785005 −0.392502 0.919751i \(-0.628391\pi\)
−0.392502 + 0.919751i \(0.628391\pi\)
\(422\) 0 0
\(423\) −733665. −0.199364
\(424\) 0 0
\(425\) −5.72502e6 −1.53746
\(426\) 0 0
\(427\) 902648. 0.239579
\(428\) 0 0
\(429\) −214766. −0.0563406
\(430\) 0 0
\(431\) −5.25703e6 −1.36316 −0.681581 0.731743i \(-0.738707\pi\)
−0.681581 + 0.731743i \(0.738707\pi\)
\(432\) 0 0
\(433\) −3.05346e6 −0.782659 −0.391329 0.920251i \(-0.627985\pi\)
−0.391329 + 0.920251i \(0.627985\pi\)
\(434\) 0 0
\(435\) −138262. −0.0350333
\(436\) 0 0
\(437\) −9.79338e6 −2.45318
\(438\) 0 0
\(439\) 2.76642e6 0.685105 0.342552 0.939499i \(-0.388709\pi\)
0.342552 + 0.939499i \(0.388709\pi\)
\(440\) 0 0
\(441\) 1.58165e6 0.387269
\(442\) 0 0
\(443\) −2.38712e6 −0.577915 −0.288958 0.957342i \(-0.593309\pi\)
−0.288958 + 0.957342i \(0.593309\pi\)
\(444\) 0 0
\(445\) 29514.7 0.00706541
\(446\) 0 0
\(447\) 2.76223e6 0.653870
\(448\) 0 0
\(449\) 88547.7 0.0207282 0.0103641 0.999946i \(-0.496701\pi\)
0.0103641 + 0.999946i \(0.496701\pi\)
\(450\) 0 0
\(451\) −2.01688e6 −0.466915
\(452\) 0 0
\(453\) −1.69417e6 −0.387893
\(454\) 0 0
\(455\) −199278. −0.0451264
\(456\) 0 0
\(457\) −5.82616e6 −1.30494 −0.652472 0.757812i \(-0.726268\pi\)
−0.652472 + 0.757812i \(0.726268\pi\)
\(458\) 0 0
\(459\) 1.35209e6 0.299553
\(460\) 0 0
\(461\) 4.32111e6 0.946984 0.473492 0.880798i \(-0.342993\pi\)
0.473492 + 0.880798i \(0.342993\pi\)
\(462\) 0 0
\(463\) −5.57763e6 −1.20920 −0.604599 0.796530i \(-0.706667\pi\)
−0.604599 + 0.796530i \(0.706667\pi\)
\(464\) 0 0
\(465\) −257730. −0.0552754
\(466\) 0 0
\(467\) −1.95457e6 −0.414724 −0.207362 0.978264i \(-0.566488\pi\)
−0.207362 + 0.978264i \(0.566488\pi\)
\(468\) 0 0
\(469\) 3.75838e6 0.788984
\(470\) 0 0
\(471\) 48456.5 0.0100647
\(472\) 0 0
\(473\) −88363.0 −0.0181601
\(474\) 0 0
\(475\) −6.45594e6 −1.31288
\(476\) 0 0
\(477\) 2.56302e6 0.515769
\(478\) 0 0
\(479\) −3.03700e6 −0.604793 −0.302396 0.953182i \(-0.597787\pi\)
−0.302396 + 0.953182i \(0.597787\pi\)
\(480\) 0 0
\(481\) 171312. 0.0337619
\(482\) 0 0
\(483\) 8.03283e6 1.56675
\(484\) 0 0
\(485\) 215766. 0.0416513
\(486\) 0 0
\(487\) 8.37573e6 1.60030 0.800148 0.599803i \(-0.204754\pi\)
0.800148 + 0.599803i \(0.204754\pi\)
\(488\) 0 0
\(489\) 5.85341e6 1.10697
\(490\) 0 0
\(491\) 1.40343e6 0.262716 0.131358 0.991335i \(-0.458066\pi\)
0.131358 + 0.991335i \(0.458066\pi\)
\(492\) 0 0
\(493\) −4.60596e6 −0.853500
\(494\) 0 0
\(495\) −70752.1 −0.0129786
\(496\) 0 0
\(497\) −5.17878e6 −0.940452
\(498\) 0 0
\(499\) 2.14531e6 0.385691 0.192845 0.981229i \(-0.438228\pi\)
0.192845 + 0.981229i \(0.438228\pi\)
\(500\) 0 0
\(501\) −2.12281e6 −0.377848
\(502\) 0 0
\(503\) −5.55969e6 −0.979785 −0.489892 0.871783i \(-0.662964\pi\)
−0.489892 + 0.871783i \(0.662964\pi\)
\(504\) 0 0
\(505\) 761261. 0.132833
\(506\) 0 0
\(507\) 257049. 0.0444116
\(508\) 0 0
\(509\) −1.12359e6 −0.192227 −0.0961136 0.995370i \(-0.530641\pi\)
−0.0961136 + 0.995370i \(0.530641\pi\)
\(510\) 0 0
\(511\) 2.60915e6 0.442025
\(512\) 0 0
\(513\) 1.52471e6 0.255797
\(514\) 0 0
\(515\) 437059. 0.0726142
\(516\) 0 0
\(517\) 1.27893e6 0.210437
\(518\) 0 0
\(519\) 2.99054e6 0.487339
\(520\) 0 0
\(521\) −3.76416e6 −0.607538 −0.303769 0.952746i \(-0.598245\pi\)
−0.303769 + 0.952746i \(0.598245\pi\)
\(522\) 0 0
\(523\) −591216. −0.0945131 −0.0472565 0.998883i \(-0.515048\pi\)
−0.0472565 + 0.998883i \(0.515048\pi\)
\(524\) 0 0
\(525\) 5.29536e6 0.838488
\(526\) 0 0
\(527\) −8.58580e6 −1.34665
\(528\) 0 0
\(529\) 1.54889e7 2.40648
\(530\) 0 0
\(531\) 2.10215e6 0.323539
\(532\) 0 0
\(533\) 2.41396e6 0.368055
\(534\) 0 0
\(535\) 315959. 0.0477251
\(536\) 0 0
\(537\) −5.51673e6 −0.825555
\(538\) 0 0
\(539\) −2.75715e6 −0.408779
\(540\) 0 0
\(541\) −5.87874e6 −0.863557 −0.431778 0.901980i \(-0.642114\pi\)
−0.431778 + 0.901980i \(0.642114\pi\)
\(542\) 0 0
\(543\) 1.24287e6 0.180895
\(544\) 0 0
\(545\) 1.06980e6 0.154281
\(546\) 0 0
\(547\) 9.43385e6 1.34810 0.674048 0.738688i \(-0.264554\pi\)
0.674048 + 0.738688i \(0.264554\pi\)
\(548\) 0 0
\(549\) −383575. −0.0543149
\(550\) 0 0
\(551\) −5.19401e6 −0.728826
\(552\) 0 0
\(553\) −1.43497e7 −1.99540
\(554\) 0 0
\(555\) 56437.0 0.00777734
\(556\) 0 0
\(557\) 9.68718e6 1.32300 0.661499 0.749946i \(-0.269921\pi\)
0.661499 + 0.749946i \(0.269921\pi\)
\(558\) 0 0
\(559\) 105760. 0.0143150
\(560\) 0 0
\(561\) −2.35698e6 −0.316191
\(562\) 0 0
\(563\) −1.16995e7 −1.55560 −0.777800 0.628512i \(-0.783664\pi\)
−0.777800 + 0.628512i \(0.783664\pi\)
\(564\) 0 0
\(565\) 94020.9 0.0123909
\(566\) 0 0
\(567\) −1.25062e6 −0.163368
\(568\) 0 0
\(569\) 1.47102e6 0.190475 0.0952373 0.995455i \(-0.469639\pi\)
0.0952373 + 0.995455i \(0.469639\pi\)
\(570\) 0 0
\(571\) 5.53198e6 0.710052 0.355026 0.934856i \(-0.384472\pi\)
0.355026 + 0.934856i \(0.384472\pi\)
\(572\) 0 0
\(573\) −848411. −0.107949
\(574\) 0 0
\(575\) 1.44534e7 1.82306
\(576\) 0 0
\(577\) 1.46652e7 1.83378 0.916891 0.399138i \(-0.130691\pi\)
0.916891 + 0.399138i \(0.130691\pi\)
\(578\) 0 0
\(579\) 9.29480e6 1.15224
\(580\) 0 0
\(581\) −1.99780e7 −2.45534
\(582\) 0 0
\(583\) −4.46789e6 −0.544416
\(584\) 0 0
\(585\) 84681.9 0.0102306
\(586\) 0 0
\(587\) −4.66463e6 −0.558756 −0.279378 0.960181i \(-0.590128\pi\)
−0.279378 + 0.960181i \(0.590128\pi\)
\(588\) 0 0
\(589\) −9.68196e6 −1.14994
\(590\) 0 0
\(591\) −1.41598e6 −0.166759
\(592\) 0 0
\(593\) 9.26934e6 1.08246 0.541230 0.840875i \(-0.317959\pi\)
0.541230 + 0.840875i \(0.317959\pi\)
\(594\) 0 0
\(595\) −2.18701e6 −0.253255
\(596\) 0 0
\(597\) −4.59431e6 −0.527576
\(598\) 0 0
\(599\) −4.96013e6 −0.564840 −0.282420 0.959291i \(-0.591137\pi\)
−0.282420 + 0.959291i \(0.591137\pi\)
\(600\) 0 0
\(601\) −7.53100e6 −0.850485 −0.425243 0.905079i \(-0.639811\pi\)
−0.425243 + 0.905079i \(0.639811\pi\)
\(602\) 0 0
\(603\) −1.59710e6 −0.178870
\(604\) 0 0
\(605\) −872946. −0.0969614
\(606\) 0 0
\(607\) 1.70472e7 1.87794 0.938970 0.343999i \(-0.111782\pi\)
0.938970 + 0.343999i \(0.111782\pi\)
\(608\) 0 0
\(609\) 4.26029e6 0.465474
\(610\) 0 0
\(611\) −1.53073e6 −0.165881
\(612\) 0 0
\(613\) −5.65370e6 −0.607689 −0.303845 0.952722i \(-0.598270\pi\)
−0.303845 + 0.952722i \(0.598270\pi\)
\(614\) 0 0
\(615\) 795252. 0.0847846
\(616\) 0 0
\(617\) −5.06541e6 −0.535676 −0.267838 0.963464i \(-0.586309\pi\)
−0.267838 + 0.963464i \(0.586309\pi\)
\(618\) 0 0
\(619\) −8.67695e6 −0.910208 −0.455104 0.890438i \(-0.650398\pi\)
−0.455104 + 0.890438i \(0.650398\pi\)
\(620\) 0 0
\(621\) −3.41350e6 −0.355198
\(622\) 0 0
\(623\) −909437. −0.0938755
\(624\) 0 0
\(625\) 9.40833e6 0.963413
\(626\) 0 0
\(627\) −2.65790e6 −0.270004
\(628\) 0 0
\(629\) 1.88010e6 0.189476
\(630\) 0 0
\(631\) 1.39822e7 1.39798 0.698992 0.715129i \(-0.253632\pi\)
0.698992 + 0.715129i \(0.253632\pi\)
\(632\) 0 0
\(633\) 3.97815e6 0.394613
\(634\) 0 0
\(635\) −509995. −0.0501916
\(636\) 0 0
\(637\) 3.29998e6 0.322228
\(638\) 0 0
\(639\) 2.20069e6 0.213210
\(640\) 0 0
\(641\) 1.51645e6 0.145775 0.0728876 0.997340i \(-0.476779\pi\)
0.0728876 + 0.997340i \(0.476779\pi\)
\(642\) 0 0
\(643\) −1.42916e7 −1.36318 −0.681589 0.731735i \(-0.738711\pi\)
−0.681589 + 0.731735i \(0.738711\pi\)
\(644\) 0 0
\(645\) 34841.4 0.00329759
\(646\) 0 0
\(647\) −1.98547e6 −0.186468 −0.0932338 0.995644i \(-0.529720\pi\)
−0.0932338 + 0.995644i \(0.529720\pi\)
\(648\) 0 0
\(649\) −3.66450e6 −0.341509
\(650\) 0 0
\(651\) 7.94144e6 0.734423
\(652\) 0 0
\(653\) −1.55847e7 −1.43027 −0.715133 0.698989i \(-0.753634\pi\)
−0.715133 + 0.698989i \(0.753634\pi\)
\(654\) 0 0
\(655\) 1.86793e6 0.170121
\(656\) 0 0
\(657\) −1.10874e6 −0.100211
\(658\) 0 0
\(659\) 75439.4 0.00676682 0.00338341 0.999994i \(-0.498923\pi\)
0.00338341 + 0.999994i \(0.498923\pi\)
\(660\) 0 0
\(661\) 3.11557e6 0.277353 0.138677 0.990338i \(-0.455715\pi\)
0.138677 + 0.990338i \(0.455715\pi\)
\(662\) 0 0
\(663\) 2.82103e6 0.249243
\(664\) 0 0
\(665\) −2.46623e6 −0.216261
\(666\) 0 0
\(667\) 1.16283e7 1.01205
\(668\) 0 0
\(669\) 8.75484e6 0.756280
\(670\) 0 0
\(671\) 668653. 0.0573316
\(672\) 0 0
\(673\) 1.40632e7 1.19687 0.598435 0.801172i \(-0.295790\pi\)
0.598435 + 0.801172i \(0.295790\pi\)
\(674\) 0 0
\(675\) −2.25023e6 −0.190093
\(676\) 0 0
\(677\) −6.04060e6 −0.506533 −0.253267 0.967396i \(-0.581505\pi\)
−0.253267 + 0.967396i \(0.581505\pi\)
\(678\) 0 0
\(679\) −6.64842e6 −0.553406
\(680\) 0 0
\(681\) −2.32175e6 −0.191843
\(682\) 0 0
\(683\) −1.32539e7 −1.08716 −0.543578 0.839359i \(-0.682931\pi\)
−0.543578 + 0.839359i \(0.682931\pi\)
\(684\) 0 0
\(685\) −2.39973e6 −0.195405
\(686\) 0 0
\(687\) 1.20426e6 0.0973482
\(688\) 0 0
\(689\) 5.34753e6 0.429146
\(690\) 0 0
\(691\) −459579. −0.0366155 −0.0183077 0.999832i \(-0.505828\pi\)
−0.0183077 + 0.999832i \(0.505828\pi\)
\(692\) 0 0
\(693\) 2.18009e6 0.172441
\(694\) 0 0
\(695\) 1.33536e6 0.104867
\(696\) 0 0
\(697\) 2.64924e7 2.06557
\(698\) 0 0
\(699\) −1.45929e7 −1.12966
\(700\) 0 0
\(701\) −1.53638e7 −1.18087 −0.590437 0.807083i \(-0.701045\pi\)
−0.590437 + 0.807083i \(0.701045\pi\)
\(702\) 0 0
\(703\) 2.12013e6 0.161799
\(704\) 0 0
\(705\) −504282. −0.0382121
\(706\) 0 0
\(707\) −2.34568e7 −1.76490
\(708\) 0 0
\(709\) 7.38149e6 0.551478 0.275739 0.961232i \(-0.411077\pi\)
0.275739 + 0.961232i \(0.411077\pi\)
\(710\) 0 0
\(711\) 6.09781e6 0.452376
\(712\) 0 0
\(713\) 2.16758e7 1.59680
\(714\) 0 0
\(715\) −147619. −0.0107988
\(716\) 0 0
\(717\) 7.30349e6 0.530557
\(718\) 0 0
\(719\) 2.47769e7 1.78741 0.893707 0.448651i \(-0.148096\pi\)
0.893707 + 0.448651i \(0.148096\pi\)
\(720\) 0 0
\(721\) −1.34671e7 −0.964798
\(722\) 0 0
\(723\) 2.27695e6 0.161997
\(724\) 0 0
\(725\) 7.66552e6 0.541622
\(726\) 0 0
\(727\) −1.24758e7 −0.875452 −0.437726 0.899108i \(-0.644216\pi\)
−0.437726 + 0.899108i \(0.644216\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 1.16068e6 0.0803377
\(732\) 0 0
\(733\) 2.67161e6 0.183659 0.0918296 0.995775i \(-0.470728\pi\)
0.0918296 + 0.995775i \(0.470728\pi\)
\(734\) 0 0
\(735\) 1.08714e6 0.0742280
\(736\) 0 0
\(737\) 2.78409e6 0.188805
\(738\) 0 0
\(739\) 1.53282e7 1.03248 0.516239 0.856445i \(-0.327332\pi\)
0.516239 + 0.856445i \(0.327332\pi\)
\(740\) 0 0
\(741\) 3.18119e6 0.212836
\(742\) 0 0
\(743\) 9.13987e6 0.607391 0.303695 0.952769i \(-0.401780\pi\)
0.303695 + 0.952769i \(0.401780\pi\)
\(744\) 0 0
\(745\) 1.89861e6 0.125327
\(746\) 0 0
\(747\) 8.48952e6 0.556649
\(748\) 0 0
\(749\) −9.73567e6 −0.634105
\(750\) 0 0
\(751\) 1.95912e6 0.126754 0.0633769 0.997990i \(-0.479813\pi\)
0.0633769 + 0.997990i \(0.479813\pi\)
\(752\) 0 0
\(753\) −8.63196e6 −0.554782
\(754\) 0 0
\(755\) −1.16449e6 −0.0743475
\(756\) 0 0
\(757\) −1.81437e7 −1.15076 −0.575382 0.817885i \(-0.695147\pi\)
−0.575382 + 0.817885i \(0.695147\pi\)
\(758\) 0 0
\(759\) 5.95046e6 0.374926
\(760\) 0 0
\(761\) 1.52710e7 0.955883 0.477941 0.878392i \(-0.341383\pi\)
0.477941 + 0.878392i \(0.341383\pi\)
\(762\) 0 0
\(763\) −3.29638e7 −2.04987
\(764\) 0 0
\(765\) 929355. 0.0574154
\(766\) 0 0
\(767\) 4.38596e6 0.269201
\(768\) 0 0
\(769\) 1.54324e7 0.941062 0.470531 0.882384i \(-0.344062\pi\)
0.470531 + 0.882384i \(0.344062\pi\)
\(770\) 0 0
\(771\) −3.81880e6 −0.231361
\(772\) 0 0
\(773\) 342144. 0.0205949 0.0102975 0.999947i \(-0.496722\pi\)
0.0102975 + 0.999947i \(0.496722\pi\)
\(774\) 0 0
\(775\) 1.42890e7 0.854570
\(776\) 0 0
\(777\) −1.73900e6 −0.103335
\(778\) 0 0
\(779\) 2.98747e7 1.76385
\(780\) 0 0
\(781\) −3.83628e6 −0.225052
\(782\) 0 0
\(783\) −1.81038e6 −0.105528
\(784\) 0 0
\(785\) 33306.4 0.00192910
\(786\) 0 0
\(787\) 2.07885e7 1.19643 0.598213 0.801337i \(-0.295878\pi\)
0.598213 + 0.801337i \(0.295878\pi\)
\(788\) 0 0
\(789\) 1.47360e7 0.842725
\(790\) 0 0
\(791\) −2.89707e6 −0.164633
\(792\) 0 0
\(793\) −800298. −0.0451927
\(794\) 0 0
\(795\) 1.76168e6 0.0988576
\(796\) 0 0
\(797\) −2.31380e7 −1.29027 −0.645133 0.764070i \(-0.723198\pi\)
−0.645133 + 0.764070i \(0.723198\pi\)
\(798\) 0 0
\(799\) −1.67993e7 −0.930944
\(800\) 0 0
\(801\) 386459. 0.0212825
\(802\) 0 0
\(803\) 1.93278e6 0.105777
\(804\) 0 0
\(805\) 5.52134e6 0.300300
\(806\) 0 0
\(807\) −1.19477e7 −0.645804
\(808\) 0 0
\(809\) 1.89827e7 1.01973 0.509866 0.860254i \(-0.329695\pi\)
0.509866 + 0.860254i \(0.329695\pi\)
\(810\) 0 0
\(811\) 1.05961e7 0.565712 0.282856 0.959162i \(-0.408718\pi\)
0.282856 + 0.959162i \(0.408718\pi\)
\(812\) 0 0
\(813\) −946148. −0.0502033
\(814\) 0 0
\(815\) 4.02333e6 0.212174
\(816\) 0 0
\(817\) 1.30887e6 0.0686025
\(818\) 0 0
\(819\) −2.60931e6 −0.135930
\(820\) 0 0
\(821\) 1.09767e7 0.568346 0.284173 0.958773i \(-0.408281\pi\)
0.284173 + 0.958773i \(0.408281\pi\)
\(822\) 0 0
\(823\) 1.13830e7 0.585810 0.292905 0.956142i \(-0.405378\pi\)
0.292905 + 0.956142i \(0.405378\pi\)
\(824\) 0 0
\(825\) 3.92263e6 0.200651
\(826\) 0 0
\(827\) −9.41841e6 −0.478866 −0.239433 0.970913i \(-0.576961\pi\)
−0.239433 + 0.970913i \(0.576961\pi\)
\(828\) 0 0
\(829\) 1.04972e7 0.530502 0.265251 0.964179i \(-0.414545\pi\)
0.265251 + 0.964179i \(0.414545\pi\)
\(830\) 0 0
\(831\) −1.15911e7 −0.582269
\(832\) 0 0
\(833\) 3.62162e7 1.80838
\(834\) 0 0
\(835\) −1.45911e6 −0.0724222
\(836\) 0 0
\(837\) −3.37466e6 −0.166501
\(838\) 0 0
\(839\) 6.67378e6 0.327316 0.163658 0.986517i \(-0.447671\pi\)
0.163658 + 0.986517i \(0.447671\pi\)
\(840\) 0 0
\(841\) −1.43440e7 −0.699327
\(842\) 0 0
\(843\) −2.68116e6 −0.129943
\(844\) 0 0
\(845\) 176682. 0.00851237
\(846\) 0 0
\(847\) 2.68981e7 1.28829
\(848\) 0 0
\(849\) 8.32882e6 0.396565
\(850\) 0 0
\(851\) −4.74651e6 −0.224673
\(852\) 0 0
\(853\) 3.58582e6 0.168739 0.0843695 0.996435i \(-0.473112\pi\)
0.0843695 + 0.996435i \(0.473112\pi\)
\(854\) 0 0
\(855\) 1.04801e6 0.0490286
\(856\) 0 0
\(857\) 1.55304e7 0.722321 0.361160 0.932504i \(-0.382381\pi\)
0.361160 + 0.932504i \(0.382381\pi\)
\(858\) 0 0
\(859\) −3.10835e7 −1.43730 −0.718649 0.695373i \(-0.755239\pi\)
−0.718649 + 0.695373i \(0.755239\pi\)
\(860\) 0 0
\(861\) −2.45042e7 −1.12650
\(862\) 0 0
\(863\) −3.59926e7 −1.64508 −0.822539 0.568708i \(-0.807443\pi\)
−0.822539 + 0.568708i \(0.807443\pi\)
\(864\) 0 0
\(865\) 2.05554e6 0.0934083
\(866\) 0 0
\(867\) 1.81811e7 0.821434
\(868\) 0 0
\(869\) −1.06298e7 −0.477502
\(870\) 0 0
\(871\) −3.33222e6 −0.148829
\(872\) 0 0
\(873\) 2.82520e6 0.125462
\(874\) 0 0
\(875\) 7.32462e6 0.323419
\(876\) 0 0
\(877\) −1.74870e7 −0.767746 −0.383873 0.923386i \(-0.625410\pi\)
−0.383873 + 0.923386i \(0.625410\pi\)
\(878\) 0 0
\(879\) 1.93060e7 0.842793
\(880\) 0 0
\(881\) 1.52380e7 0.661437 0.330719 0.943729i \(-0.392709\pi\)
0.330719 + 0.943729i \(0.392709\pi\)
\(882\) 0 0
\(883\) 3.22630e7 1.39252 0.696262 0.717787i \(-0.254845\pi\)
0.696262 + 0.717787i \(0.254845\pi\)
\(884\) 0 0
\(885\) 1.44491e6 0.0620128
\(886\) 0 0
\(887\) −2.82559e7 −1.20587 −0.602934 0.797791i \(-0.706002\pi\)
−0.602934 + 0.797791i \(0.706002\pi\)
\(888\) 0 0
\(889\) 1.57145e7 0.666877
\(890\) 0 0
\(891\) −926416. −0.0390941
\(892\) 0 0
\(893\) −1.89441e7 −0.794959
\(894\) 0 0
\(895\) −3.79191e6 −0.158234
\(896\) 0 0
\(897\) −7.12199e6 −0.295543
\(898\) 0 0
\(899\) 1.14960e7 0.474402
\(900\) 0 0
\(901\) 5.86873e7 2.40842
\(902\) 0 0
\(903\) −1.07357e6 −0.0438139
\(904\) 0 0
\(905\) 854283. 0.0346721
\(906\) 0 0
\(907\) 1.87244e7 0.755771 0.377885 0.925852i \(-0.376651\pi\)
0.377885 + 0.925852i \(0.376651\pi\)
\(908\) 0 0
\(909\) 9.96781e6 0.400120
\(910\) 0 0
\(911\) 1.24649e7 0.497616 0.248808 0.968553i \(-0.419961\pi\)
0.248808 + 0.968553i \(0.419961\pi\)
\(912\) 0 0
\(913\) −1.47991e7 −0.587567
\(914\) 0 0
\(915\) −263649. −0.0104105
\(916\) 0 0
\(917\) −5.75566e7 −2.26033
\(918\) 0 0
\(919\) 3.05164e7 1.19191 0.595956 0.803017i \(-0.296773\pi\)
0.595956 + 0.803017i \(0.296773\pi\)
\(920\) 0 0
\(921\) −2.28101e7 −0.886091
\(922\) 0 0
\(923\) 4.59157e6 0.177401
\(924\) 0 0
\(925\) −3.12897e6 −0.120239
\(926\) 0 0
\(927\) 5.72276e6 0.218729
\(928\) 0 0
\(929\) −1.89467e7 −0.720267 −0.360134 0.932901i \(-0.617269\pi\)
−0.360134 + 0.932901i \(0.617269\pi\)
\(930\) 0 0
\(931\) 4.08400e7 1.54423
\(932\) 0 0
\(933\) 1.26494e7 0.475737
\(934\) 0 0
\(935\) −1.62007e6 −0.0606043
\(936\) 0 0
\(937\) 6.77539e6 0.252107 0.126054 0.992023i \(-0.459769\pi\)
0.126054 + 0.992023i \(0.459769\pi\)
\(938\) 0 0
\(939\) −2.75244e7 −1.01872
\(940\) 0 0
\(941\) −4.09175e7 −1.50638 −0.753190 0.657802i \(-0.771486\pi\)
−0.753190 + 0.657802i \(0.771486\pi\)
\(942\) 0 0
\(943\) −6.68830e7 −2.44927
\(944\) 0 0
\(945\) −859607. −0.0313127
\(946\) 0 0
\(947\) 3.30315e7 1.19689 0.598445 0.801164i \(-0.295786\pi\)
0.598445 + 0.801164i \(0.295786\pi\)
\(948\) 0 0
\(949\) −2.31330e6 −0.0833810
\(950\) 0 0
\(951\) 4.89509e6 0.175513
\(952\) 0 0
\(953\) 7.16060e6 0.255398 0.127699 0.991813i \(-0.459241\pi\)
0.127699 + 0.991813i \(0.459241\pi\)
\(954\) 0 0
\(955\) −583153. −0.0206906
\(956\) 0 0
\(957\) 3.15588e6 0.111389
\(958\) 0 0
\(959\) 7.39429e7 2.59627
\(960\) 0 0
\(961\) −7.19996e6 −0.251491
\(962\) 0 0
\(963\) 4.13711e6 0.143758
\(964\) 0 0
\(965\) 6.38875e6 0.220850
\(966\) 0 0
\(967\) −5.72729e6 −0.196962 −0.0984812 0.995139i \(-0.531398\pi\)
−0.0984812 + 0.995139i \(0.531398\pi\)
\(968\) 0 0
\(969\) 3.49125e7 1.19446
\(970\) 0 0
\(971\) −1.19944e7 −0.408254 −0.204127 0.978944i \(-0.565436\pi\)
−0.204127 + 0.978944i \(0.565436\pi\)
\(972\) 0 0
\(973\) −4.11466e7 −1.39332
\(974\) 0 0
\(975\) −4.69492e6 −0.158167
\(976\) 0 0
\(977\) −2.39435e7 −0.802512 −0.401256 0.915966i \(-0.631426\pi\)
−0.401256 + 0.915966i \(0.631426\pi\)
\(978\) 0 0
\(979\) −673682. −0.0224646
\(980\) 0 0
\(981\) 1.40078e7 0.464726
\(982\) 0 0
\(983\) −5.44669e7 −1.79783 −0.898915 0.438123i \(-0.855643\pi\)
−0.898915 + 0.438123i \(0.855643\pi\)
\(984\) 0 0
\(985\) −973270. −0.0319626
\(986\) 0 0
\(987\) 1.55385e7 0.507710
\(988\) 0 0
\(989\) −2.93027e6 −0.0952613
\(990\) 0 0
\(991\) −1.99942e7 −0.646724 −0.323362 0.946275i \(-0.604813\pi\)
−0.323362 + 0.946275i \(0.604813\pi\)
\(992\) 0 0
\(993\) 2.88702e7 0.929130
\(994\) 0 0
\(995\) −3.15789e6 −0.101120
\(996\) 0 0
\(997\) 5.61651e6 0.178949 0.0894744 0.995989i \(-0.471481\pi\)
0.0894744 + 0.995989i \(0.471481\pi\)
\(998\) 0 0
\(999\) 738975. 0.0234270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.a.t.1.2 3
4.3 odd 2 39.6.a.c.1.2 3
12.11 even 2 117.6.a.e.1.2 3
20.19 odd 2 975.6.a.d.1.2 3
52.51 odd 2 507.6.a.d.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.6.a.c.1.2 3 4.3 odd 2
117.6.a.e.1.2 3 12.11 even 2
507.6.a.d.1.2 3 52.51 odd 2
624.6.a.t.1.2 3 1.1 even 1 trivial
975.6.a.d.1.2 3 20.19 odd 2