L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 2·11-s + 5·16-s − 4·22-s − 12·23-s − 10·25-s + 8·29-s − 6·32-s + 4·37-s + 20·43-s + 6·44-s + 24·46-s + 20·50-s − 4·53-s − 16·58-s + 7·64-s + 16·67-s − 32·71-s − 8·74-s − 16·79-s − 40·86-s − 8·88-s − 36·92-s − 30·100-s + 8·106-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 0.603·11-s + 5/4·16-s − 0.852·22-s − 2.50·23-s − 2·25-s + 1.48·29-s − 1.06·32-s + 0.657·37-s + 3.04·43-s + 0.904·44-s + 3.53·46-s + 2.82·50-s − 0.549·53-s − 2.10·58-s + 7/8·64-s + 1.95·67-s − 3.79·71-s − 0.929·74-s − 1.80·79-s − 4.31·86-s − 0.852·88-s − 3.75·92-s − 3·100-s + 0.777·106-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1−T)2 |
good | 5 | C2 | (1+pT2)2 |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | C22 | 1+26T2+p2T4 |
| 19 | C22 | 1+20T2+p2T4 |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C2 | (1−4T+pT2)2 |
| 31 | C22 | 1+12T2+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C22 | 1+74T2+p2T4 |
| 43 | C2 | (1−10T+pT2)2 |
| 47 | C22 | 1−68T2+p2T4 |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | C22 | 1−10T2+p2T4 |
| 61 | C22 | 1+24T2+p2T4 |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | C2 | (1+16T+pT2)2 |
| 73 | C22 | 1+74T2+p2T4 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1+4T2+p2T4 |
| 89 | C22 | 1+128T2+p2T4 |
| 97 | C22 | 1+144T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.61306098166435554070562429733, −7.49151797748353724339772904966, −6.73434738171616199134482069220, −6.65384527303565678162733941289, −6.15284543364006056548718299211, −5.96843709024867243502708045318, −5.67611566136597490879348210320, −5.35891266185092378158829619906, −4.53764696532617191512962115334, −4.30847609020242236869298969714, −3.87591841174532161644364408016, −3.81771704539733165727045683571, −2.91948815150303705673915894821, −2.73373241935686791236895631579, −2.19371925871591313739375559171, −1.96006000917457453118379825711, −1.22292499567795485421307076375, −1.10508380038814680699142894786, 0, 0,
1.10508380038814680699142894786, 1.22292499567795485421307076375, 1.96006000917457453118379825711, 2.19371925871591313739375559171, 2.73373241935686791236895631579, 2.91948815150303705673915894821, 3.81771704539733165727045683571, 3.87591841174532161644364408016, 4.30847609020242236869298969714, 4.53764696532617191512962115334, 5.35891266185092378158829619906, 5.67611566136597490879348210320, 5.96843709024867243502708045318, 6.15284543364006056548718299211, 6.65384527303565678162733941289, 6.73434738171616199134482069220, 7.49151797748353724339772904966, 7.61306098166435554070562429733