Properties

Label 4-9702e2-1.1-c1e2-0-25
Degree $4$
Conductor $94128804$
Sign $1$
Analytic cond. $6001.73$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 2·11-s + 5·16-s − 4·22-s − 12·23-s − 10·25-s + 8·29-s − 6·32-s + 4·37-s + 20·43-s + 6·44-s + 24·46-s + 20·50-s − 4·53-s − 16·58-s + 7·64-s + 16·67-s − 32·71-s − 8·74-s − 16·79-s − 40·86-s − 8·88-s − 36·92-s − 30·100-s + 8·106-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s + 0.603·11-s + 5/4·16-s − 0.852·22-s − 2.50·23-s − 2·25-s + 1.48·29-s − 1.06·32-s + 0.657·37-s + 3.04·43-s + 0.904·44-s + 3.53·46-s + 2.82·50-s − 0.549·53-s − 2.10·58-s + 7/8·64-s + 1.95·67-s − 3.79·71-s − 0.929·74-s − 1.80·79-s − 4.31·86-s − 0.852·88-s − 3.75·92-s − 3·100-s + 0.777·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(94128804\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(6001.73\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 94128804,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 68 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 144 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61306098166435554070562429733, −7.49151797748353724339772904966, −6.73434738171616199134482069220, −6.65384527303565678162733941289, −6.15284543364006056548718299211, −5.96843709024867243502708045318, −5.67611566136597490879348210320, −5.35891266185092378158829619906, −4.53764696532617191512962115334, −4.30847609020242236869298969714, −3.87591841174532161644364408016, −3.81771704539733165727045683571, −2.91948815150303705673915894821, −2.73373241935686791236895631579, −2.19371925871591313739375559171, −1.96006000917457453118379825711, −1.22292499567795485421307076375, −1.10508380038814680699142894786, 0, 0, 1.10508380038814680699142894786, 1.22292499567795485421307076375, 1.96006000917457453118379825711, 2.19371925871591313739375559171, 2.73373241935686791236895631579, 2.91948815150303705673915894821, 3.81771704539733165727045683571, 3.87591841174532161644364408016, 4.30847609020242236869298969714, 4.53764696532617191512962115334, 5.35891266185092378158829619906, 5.67611566136597490879348210320, 5.96843709024867243502708045318, 6.15284543364006056548718299211, 6.65384527303565678162733941289, 6.73434738171616199134482069220, 7.49151797748353724339772904966, 7.61306098166435554070562429733

Graph of the $Z$-function along the critical line