Properties

Label 4-9702e2-1.1-c1e2-0-23
Degree $4$
Conductor $94128804$
Sign $1$
Analytic cond. $6001.73$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 2·11-s + 5·16-s + 4·22-s + 8·23-s − 8·25-s + 12·29-s − 6·32-s − 16·37-s − 16·43-s − 6·44-s − 16·46-s + 16·50-s − 24·58-s + 7·64-s − 16·67-s + 16·71-s + 32·74-s + 8·79-s + 32·86-s + 8·88-s + 24·92-s − 24·100-s − 16·107-s + 8·109-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s − 0.603·11-s + 5/4·16-s + 0.852·22-s + 1.66·23-s − 8/5·25-s + 2.22·29-s − 1.06·32-s − 2.63·37-s − 2.43·43-s − 0.904·44-s − 2.35·46-s + 2.26·50-s − 3.15·58-s + 7/8·64-s − 1.95·67-s + 1.89·71-s + 3.71·74-s + 0.900·79-s + 3.45·86-s + 0.852·88-s + 2.50·92-s − 2.39·100-s − 1.54·107-s + 0.766·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94128804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(94128804\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(6001.73\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 94128804,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 72 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 144 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44101026525792074041023290162, −7.28221579696518488307160152922, −6.83241933588875437708540172818, −6.76647536949665559531313365175, −6.15855033748627495505040230747, −6.11686917129522057351557448824, −5.35074155741522510869068543679, −5.21118544326895154803339956925, −4.85308670455194117520888050716, −4.52228542407737730630259468249, −3.69952845422182766797975115257, −3.58566315054123885461219146000, −2.99428346365492788390692356300, −2.86985277158359714171875405724, −2.06572600660909889910839720824, −2.04319898960403537319275019497, −1.23854838287504997368745280975, −1.06399021800454625787883543368, 0, 0, 1.06399021800454625787883543368, 1.23854838287504997368745280975, 2.04319898960403537319275019497, 2.06572600660909889910839720824, 2.86985277158359714171875405724, 2.99428346365492788390692356300, 3.58566315054123885461219146000, 3.69952845422182766797975115257, 4.52228542407737730630259468249, 4.85308670455194117520888050716, 5.21118544326895154803339956925, 5.35074155741522510869068543679, 6.11686917129522057351557448824, 6.15855033748627495505040230747, 6.76647536949665559531313365175, 6.83241933588875437708540172818, 7.28221579696518488307160152922, 7.44101026525792074041023290162

Graph of the $Z$-function along the critical line