L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s − 2·11-s + 5·16-s + 4·22-s + 8·23-s − 8·25-s + 12·29-s − 6·32-s − 16·37-s − 16·43-s − 6·44-s − 16·46-s + 16·50-s − 24·58-s + 7·64-s − 16·67-s + 16·71-s + 32·74-s + 8·79-s + 32·86-s + 8·88-s + 24·92-s − 24·100-s − 16·107-s + 8·109-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s − 0.603·11-s + 5/4·16-s + 0.852·22-s + 1.66·23-s − 8/5·25-s + 2.22·29-s − 1.06·32-s − 2.63·37-s − 2.43·43-s − 0.904·44-s − 2.35·46-s + 2.26·50-s − 3.15·58-s + 7/8·64-s − 1.95·67-s + 1.89·71-s + 3.71·74-s + 0.900·79-s + 3.45·86-s + 0.852·88-s + 2.50·92-s − 2.39·100-s − 1.54·107-s + 0.766·109-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1+T)2 |
good | 5 | C22 | 1+8T2+p2T4 |
| 13 | C22 | 1+24T2+p2T4 |
| 17 | C22 | 1+32T2+p2T4 |
| 19 | C22 | 1+30T2+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C22 | 1+54T2+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C22 | 1+32T2+p2T4 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C22 | 1+22T2+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C22 | 1+72T2+p2T4 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C22 | 1+144T2+p2T4 |
| 79 | C2 | (1−4T+pT2)2 |
| 83 | C22 | 1+158T2+p2T4 |
| 89 | C22 | 1+80T2+p2T4 |
| 97 | C22 | 1−48T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.44101026525792074041023290162, −7.28221579696518488307160152922, −6.83241933588875437708540172818, −6.76647536949665559531313365175, −6.15855033748627495505040230747, −6.11686917129522057351557448824, −5.35074155741522510869068543679, −5.21118544326895154803339956925, −4.85308670455194117520888050716, −4.52228542407737730630259468249, −3.69952845422182766797975115257, −3.58566315054123885461219146000, −2.99428346365492788390692356300, −2.86985277158359714171875405724, −2.06572600660909889910839720824, −2.04319898960403537319275019497, −1.23854838287504997368745280975, −1.06399021800454625787883543368, 0, 0,
1.06399021800454625787883543368, 1.23854838287504997368745280975, 2.04319898960403537319275019497, 2.06572600660909889910839720824, 2.86985277158359714171875405724, 2.99428346365492788390692356300, 3.58566315054123885461219146000, 3.69952845422182766797975115257, 4.52228542407737730630259468249, 4.85308670455194117520888050716, 5.21118544326895154803339956925, 5.35074155741522510869068543679, 6.11686917129522057351557448824, 6.15855033748627495505040230747, 6.76647536949665559531313365175, 6.83241933588875437708540172818, 7.28221579696518488307160152922, 7.44101026525792074041023290162