Properties

Label 4-96e2-1.1-c11e2-0-3
Degree $4$
Conductor $9216$
Sign $1$
Analytic cond. $5440.67$
Root an. cond. $8.58841$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 486·3-s − 7.02e3·5-s − 5.65e4·7-s + 1.77e5·9-s + 5.78e5·11-s − 9.02e5·13-s + 3.41e6·15-s + 5.65e6·17-s + 1.91e7·19-s + 2.74e7·21-s − 1.23e7·23-s + 1.86e7·25-s − 5.73e7·27-s − 1.73e8·29-s + 6.26e7·31-s − 2.81e8·33-s + 3.96e8·35-s + 2.27e8·37-s + 4.38e8·39-s − 7.85e8·41-s + 8.12e8·43-s − 1.24e9·45-s + 7.11e8·47-s − 6.42e8·49-s − 2.74e9·51-s + 1.16e9·53-s − 4.06e9·55-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.00·5-s − 1.27·7-s + 9-s + 1.08·11-s − 0.673·13-s + 1.16·15-s + 0.966·17-s + 1.77·19-s + 1.46·21-s − 0.400·23-s + 0.381·25-s − 0.769·27-s − 1.57·29-s + 0.392·31-s − 1.25·33-s + 1.27·35-s + 0.540·37-s + 0.778·39-s − 1.05·41-s + 0.843·43-s − 1.00·45-s + 0.452·47-s − 0.324·49-s − 1.11·51-s + 0.382·53-s − 1.08·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9216\)    =    \(2^{10} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(5440.67\)
Root analytic conductor: \(8.58841\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 9216,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p^{5} T )^{2} \)
good5$D_{4}$ \( 1 + 1404 p T + 1226958 p^{2} T^{2} + 1404 p^{12} T^{3} + p^{22} T^{4} \)
7$D_{4}$ \( 1 + 56520 T + 548077906 p T^{2} + 56520 p^{11} T^{3} + p^{22} T^{4} \)
11$D_{4}$ \( 1 - 52600 p T + 603957635126 T^{2} - 52600 p^{12} T^{3} + p^{22} T^{4} \)
13$D_{4}$ \( 1 + 902068 T + 2800075958286 T^{2} + 902068 p^{11} T^{3} + p^{22} T^{4} \)
17$D_{4}$ \( 1 - 5657652 T + 43615619702278 T^{2} - 5657652 p^{11} T^{3} + p^{22} T^{4} \)
19$D_{4}$ \( 1 - 19193112 T + 323650450963174 T^{2} - 19193112 p^{11} T^{3} + p^{22} T^{4} \)
23$D_{4}$ \( 1 + 12368640 T + 1871690946611854 T^{2} + 12368640 p^{11} T^{3} + p^{22} T^{4} \)
29$D_{4}$ \( 1 + 173581452 T + 30058862497633518 T^{2} + 173581452 p^{11} T^{3} + p^{22} T^{4} \)
31$D_{4}$ \( 1 - 62608392 T + 25015365536406478 T^{2} - 62608392 p^{11} T^{3} + p^{22} T^{4} \)
37$D_{4}$ \( 1 - 227986796 T + 9166167104462598 p T^{2} - 227986796 p^{11} T^{3} + p^{22} T^{4} \)
41$D_{4}$ \( 1 + 785693916 T + 632044485007790646 T^{2} + 785693916 p^{11} T^{3} + p^{22} T^{4} \)
43$D_{4}$ \( 1 - 812685096 T + 1620937325484163318 T^{2} - 812685096 p^{11} T^{3} + p^{22} T^{4} \)
47$D_{4}$ \( 1 - 711784720 T + 5067747011525956190 T^{2} - 711784720 p^{11} T^{3} + p^{22} T^{4} \)
53$D_{4}$ \( 1 - 1164124836 T + 12993899229378123294 T^{2} - 1164124836 p^{11} T^{3} + p^{22} T^{4} \)
59$D_{4}$ \( 1 - 584580184 T + 3606361935635116886 T^{2} - 584580184 p^{11} T^{3} + p^{22} T^{4} \)
61$D_{4}$ \( 1 - 4474864476 T + 86409579397357530062 T^{2} - 4474864476 p^{11} T^{3} + p^{22} T^{4} \)
67$D_{4}$ \( 1 + 7319879064 T + \)\(13\!\cdots\!34\)\( T^{2} + 7319879064 p^{11} T^{3} + p^{22} T^{4} \)
71$D_{4}$ \( 1 - 4063300576 T + 17090284326077205422 T^{2} - 4063300576 p^{11} T^{3} + p^{22} T^{4} \)
73$D_{4}$ \( 1 + 50128218348 T + \)\(11\!\cdots\!34\)\( T^{2} + 50128218348 p^{11} T^{3} + p^{22} T^{4} \)
79$D_{4}$ \( 1 - 7404872328 T + \)\(13\!\cdots\!54\)\( T^{2} - 7404872328 p^{11} T^{3} + p^{22} T^{4} \)
83$D_{4}$ \( 1 - 43253676216 T + \)\(30\!\cdots\!22\)\( T^{2} - 43253676216 p^{11} T^{3} + p^{22} T^{4} \)
89$D_{4}$ \( 1 + 134083427724 T + \)\(10\!\cdots\!58\)\( T^{2} + 134083427724 p^{11} T^{3} + p^{22} T^{4} \)
97$D_{4}$ \( 1 + 63225345436 T + \)\(58\!\cdots\!30\)\( T^{2} + 63225345436 p^{11} T^{3} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56821487801215140290372405214, −11.27074908571852327137033180387, −10.23513000711164417687491846185, −10.06022846164936250099500338851, −9.350640490862122292133271308100, −9.078848996352783833828241440749, −7.77153785297607237571778864050, −7.68356632849271001146335794025, −6.85958597543053290550376468309, −6.58316819958839996832644267327, −5.56283055064951363992777685962, −5.53517082393053055152119173936, −4.46671328699429073269026684433, −3.87367074913414391042244915530, −3.41191857921158503251612939503, −2.70767624587993576861499984094, −1.42772073961648815222659058980, −1.00238109539328588735104352035, 0, 0, 1.00238109539328588735104352035, 1.42772073961648815222659058980, 2.70767624587993576861499984094, 3.41191857921158503251612939503, 3.87367074913414391042244915530, 4.46671328699429073269026684433, 5.53517082393053055152119173936, 5.56283055064951363992777685962, 6.58316819958839996832644267327, 6.85958597543053290550376468309, 7.68356632849271001146335794025, 7.77153785297607237571778864050, 9.078848996352783833828241440749, 9.350640490862122292133271308100, 10.06022846164936250099500338851, 10.23513000711164417687491846185, 11.27074908571852327137033180387, 11.56821487801215140290372405214

Graph of the $Z$-function along the critical line