Properties

Label 96.12.a.c
Level $96$
Weight $12$
Character orbit 96.a
Self dual yes
Analytic conductor $73.761$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [96,12,Mod(1,96)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("96.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(96, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 96.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-486,0,-7020] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.7609453337\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{12391}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 12391 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 16\sqrt{12391}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 243 q^{3} + (5 \beta - 3510) q^{5} + (17 \beta - 28260) q^{7} + 59049 q^{9} + ( - 126 \beta + 289300) q^{11} + ( - 558 \beta - 451034) q^{13} + ( - 1215 \beta + 852930) q^{15} + ( - 3222 \beta + 2828826) q^{17}+ \cdots + ( - 7440174 \beta + 17082875700) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 486 q^{3} - 7020 q^{5} - 56520 q^{7} + 118098 q^{9} + 578600 q^{11} - 902068 q^{13} + 1705860 q^{15} + 5657652 q^{17} + 19193112 q^{19} + 13734360 q^{21} - 12368640 q^{23} + 85588750 q^{25} - 28697814 q^{27}+ \cdots + 34165751400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−111.315
111.315
0 −243.000 0 −12415.2 0 −58537.6 0 59049.0 0
1.2 0 −243.000 0 5395.19 0 2017.64 0 59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 96.12.a.c 2
4.b odd 2 1 96.12.a.e yes 2
8.b even 2 1 192.12.a.z 2
8.d odd 2 1 192.12.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.12.a.c 2 1.a even 1 1 trivial
96.12.a.e yes 2 4.b odd 2 1
192.12.a.w 2 8.d odd 2 1
192.12.a.z 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(96))\):

\( T_{5}^{2} + 7020T_{5} - 66982300 \) Copy content Toggle raw display
\( T_{7}^{2} + 56520T_{7} - 118108144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 243)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 7020 T - 66982300 \) Copy content Toggle raw display
$7$ \( T^{2} + 56520 T - 118108144 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 33334293904 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 784244829788 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 24928172912988 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 90669933166736 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 33928569216000 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 56\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 25\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 46\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 23\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 55\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 56\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 61\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 11\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 44\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 54\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 10\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 46\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 44\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 84\!\cdots\!76 \) Copy content Toggle raw display
show more
show less