L(s) = 1 | + 3·2-s + 4·4-s + 4·7-s + 3·8-s − 9-s + 2·11-s − 4·13-s + 12·14-s + 3·16-s + 3·17-s − 3·18-s + 6·22-s − 2·23-s − 12·26-s + 16·28-s − 12·29-s − 3·31-s + 6·32-s + 9·34-s − 4·36-s + 15·37-s + 15·41-s − 43-s + 8·44-s − 6·46-s + 13·47-s + 3·49-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 2·4-s + 1.51·7-s + 1.06·8-s − 1/3·9-s + 0.603·11-s − 1.10·13-s + 3.20·14-s + 3/4·16-s + 0.727·17-s − 0.707·18-s + 1.27·22-s − 0.417·23-s − 2.35·26-s + 3.02·28-s − 2.22·29-s − 0.538·31-s + 1.06·32-s + 1.54·34-s − 2/3·36-s + 2.46·37-s + 2.34·41-s − 0.152·43-s + 1.20·44-s − 0.884·46-s + 1.89·47-s + 3/7·49-s + ⋯ |
Λ(s)=(=(81450625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(81450625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
81450625
= 54⋅194
|
Sign: |
1
|
Analytic conductor: |
5193.36 |
Root analytic conductor: |
8.48910 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 81450625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
13.36941737 |
L(21) |
≈ |
13.36941737 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 19 | | 1 |
good | 2 | C22 | 1−3T+5T2−3pT3+p2T4 |
| 3 | C22 | 1+T2+p2T4 |
| 7 | D4 | 1−4T+13T2−4pT3+p2T4 |
| 11 | D4 | 1−2T+3T2−2pT3+p2T4 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | D4 | 1−3T+25T2−3pT3+p2T4 |
| 23 | D4 | 1+2T+42T2+2pT3+p2T4 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | D4 | 1+3T+53T2+3pT3+p2T4 |
| 37 | D4 | 1−15T+119T2−15pT3+p2T4 |
| 41 | D4 | 1−15T+137T2−15pT3+p2T4 |
| 43 | D4 | 1+T−15T2+pT3+p2T4 |
| 47 | D4 | 1−13T+135T2−13pT3+p2T4 |
| 53 | D4 | 1+15T+161T2+15pT3+p2T4 |
| 59 | D4 | 1−10T+138T2−10pT3+p2T4 |
| 61 | D4 | 1−9T+41T2−9pT3+p2T4 |
| 67 | D4 | 1+4T+93T2+4pT3+p2T4 |
| 71 | D4 | 1−18T+203T2−18pT3+p2T4 |
| 73 | D4 | 1−8T+117T2−8pT3+p2T4 |
| 79 | C2 | (1+T+pT2)2 |
| 83 | D4 | 1−9T+155T2−9pT3+p2T4 |
| 89 | D4 | 1−6T+142T2−6pT3+p2T4 |
| 97 | D4 | 1−17T+265T2−17pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.70946533386677580161801671705, −7.53199758408307633699694527820, −7.42544825868587483579585807805, −6.65800630512978560427129183879, −6.23808047807277525242572979983, −6.15172373135778251105009087537, −5.56275845217199680373185068814, −5.36523198740411731674930401879, −5.15533855330473720133972005760, −4.86032696566018611235211145461, −4.33576223688831134920011937676, −4.03933060691991415349575302132, −3.91745396200519847767147674306, −3.57101228384936875797749352760, −2.85071817820189945034282567084, −2.58267636702775333577416494771, −2.18123886133608093418840986860, −1.73361146595770377618383141504, −1.13781103842675887960957823458, −0.58815393720946770600808150623,
0.58815393720946770600808150623, 1.13781103842675887960957823458, 1.73361146595770377618383141504, 2.18123886133608093418840986860, 2.58267636702775333577416494771, 2.85071817820189945034282567084, 3.57101228384936875797749352760, 3.91745396200519847767147674306, 4.03933060691991415349575302132, 4.33576223688831134920011937676, 4.86032696566018611235211145461, 5.15533855330473720133972005760, 5.36523198740411731674930401879, 5.56275845217199680373185068814, 6.15172373135778251105009087537, 6.23808047807277525242572979983, 6.65800630512978560427129183879, 7.42544825868587483579585807805, 7.53199758408307633699694527820, 7.70946533386677580161801671705