L(s) = 1 | + 4·2-s − 3-s + 12·4-s − 4·6-s − 57·7-s + 32·8-s − 9·9-s + 10·11-s − 12·12-s − 13·13-s − 228·14-s + 80·16-s + 51·17-s − 36·18-s − 38·19-s + 57·21-s + 40·22-s + 155·23-s − 32·24-s − 52·26-s − 8·27-s − 684·28-s − 79·29-s − 16·31-s + 192·32-s − 10·33-s + 204·34-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.192·3-s + 3/2·4-s − 0.272·6-s − 3.07·7-s + 1.41·8-s − 1/3·9-s + 0.274·11-s − 0.288·12-s − 0.277·13-s − 4.35·14-s + 5/4·16-s + 0.727·17-s − 0.471·18-s − 0.458·19-s + 0.592·21-s + 0.387·22-s + 1.40·23-s − 0.272·24-s − 0.392·26-s − 0.0570·27-s − 4.61·28-s − 0.505·29-s − 0.0926·31-s + 1.06·32-s − 0.0527·33-s + 1.02·34-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(902500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
3141.80 |
Root analytic conductor: |
7.48677 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 902500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 5 | | 1 |
| 19 | C1 | (1+pT)2 |
good | 3 | D4 | 1+T+10T2+p3T3+p6T4 |
| 7 | D4 | 1+57T+1454T2+57p3T3+p6T4 |
| 11 | D4 | 1−10T+2510T2−10p3T3+p6T4 |
| 13 | D4 | 1+pT+2268T2+p4T3+p6T4 |
| 17 | D4 | 1−3pT+520T2−3p4T3+p6T4 |
| 23 | D4 | 1−155T+994pT2−155p3T3+p6T4 |
| 29 | D4 | 1+79T+13124T2+79p3T3+p6T4 |
| 31 | D4 | 1+16T+48318T2+16p3T3+p6T4 |
| 37 | D4 | 1+380T+126078T2+380p3T3+p6T4 |
| 41 | D4 | 1+790T+292274T2+790p3T3+p6T4 |
| 43 | D4 | 1+296T+78966T2+296p3T3+p6T4 |
| 47 | D4 | 1−200T+146846T2−200p3T3+p6T4 |
| 53 | D4 | 1+397T+333572T2+397p3T3+p6T4 |
| 59 | D4 | 1−201T+197794T2−201p3T3+p6T4 |
| 61 | D4 | 1+680T+483894T2+680p3T3+p6T4 |
| 67 | D4 | 1−939T+740138T2−939p3T3+p6T4 |
| 71 | D4 | 1−406T+735614T2−406p3T3+p6T4 |
| 73 | D4 | 1+123T+781772T2+123p3T3+p6T4 |
| 79 | D4 | 1−106T+840030T2−106p3T3+p6T4 |
| 83 | D4 | 1+2226T+2380750T2+2226p3T3+p6T4 |
| 89 | D4 | 1+870T+1594738T2+870p3T3+p6T4 |
| 97 | D4 | 1−1864T+2438382T2−1864p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.629576398992878818528042059212, −9.194662380355910187118361404389, −8.525297720716282184656598593212, −8.342474162730769681284093307756, −7.30597435772406113342176953640, −6.93934498463053888675641504050, −6.88083544045976845019605304651, −6.46577391308989674088085143348, −5.84585713140762792056314855940, −5.69854559396613702682872783528, −5.07269518462082386258986104834, −4.66408454669520975301503332128, −3.72840049233367941783150918293, −3.56001818230604933785408208542, −3.14949896343821601494171024124, −2.87917478794303451032666866285, −2.05745957732913278040109158479, −1.24035554946339237114310749178, 0, 0,
1.24035554946339237114310749178, 2.05745957732913278040109158479, 2.87917478794303451032666866285, 3.14949896343821601494171024124, 3.56001818230604933785408208542, 3.72840049233367941783150918293, 4.66408454669520975301503332128, 5.07269518462082386258986104834, 5.69854559396613702682872783528, 5.84585713140762792056314855940, 6.46577391308989674088085143348, 6.88083544045976845019605304651, 6.93934498463053888675641504050, 7.30597435772406113342176953640, 8.342474162730769681284093307756, 8.525297720716282184656598593212, 9.194662380355910187118361404389, 9.629576398992878818528042059212