Properties

Label 950.4.a.h.1.2
Level $950$
Weight $4$
Character 950.1
Self dual yes
Analytic conductor $56.052$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,4,Mod(1,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,-1,8,0,-2,-57,16,35] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.0518145055\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.15207\) of defining polynomial
Character \(\chi\) \(=\) 950.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +6.15207 q^{3} +4.00000 q^{4} +12.3041 q^{6} -21.8479 q^{7} +8.00000 q^{8} +10.8479 q^{9} -8.30413 q^{11} +24.6083 q^{12} -53.0645 q^{13} -43.6959 q^{14} +16.0000 q^{16} -74.2810 q^{17} +21.6959 q^{18} -19.0000 q^{19} -134.410 q^{21} -16.6083 q^{22} +163.977 q^{23} +49.2165 q^{24} -106.129 q^{26} -99.3686 q^{27} -87.3917 q^{28} -232.410 q^{29} +98.4331 q^{31} +32.0000 q^{32} -51.0876 q^{33} -148.562 q^{34} +43.3917 q^{36} -296.433 q^{37} -38.0000 q^{38} -326.456 q^{39} -434.912 q^{41} -268.820 q^{42} +171.299 q^{43} -33.2165 q^{44} +327.954 q^{46} +366.083 q^{47} +98.4331 q^{48} +134.332 q^{49} -456.982 q^{51} -212.258 q^{52} -138.631 q^{53} -198.737 q^{54} -174.783 q^{56} -116.889 q^{57} -464.820 q^{58} +572.797 q^{59} -632.691 q^{61} +196.866 q^{62} -237.005 q^{63} +64.0000 q^{64} -102.175 q^{66} +183.461 q^{67} -297.124 q^{68} +1008.80 q^{69} +56.6545 q^{71} +86.7835 q^{72} -68.1521 q^{73} -592.866 q^{74} -76.0000 q^{76} +181.428 q^{77} -652.912 q^{78} -332.820 q^{79} -904.217 q^{81} -869.825 q^{82} -1152.91 q^{83} -537.640 q^{84} +342.598 q^{86} -1429.80 q^{87} -66.4331 q^{88} -368.479 q^{89} +1159.35 q^{91} +655.908 q^{92} +605.567 q^{93} +732.165 q^{94} +196.866 q^{96} +426.443 q^{97} +268.664 q^{98} -90.0827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - q^{3} + 8 q^{4} - 2 q^{6} - 57 q^{7} + 16 q^{8} + 35 q^{9} + 10 q^{11} - 4 q^{12} - 13 q^{13} - 114 q^{14} + 32 q^{16} + 51 q^{17} + 70 q^{18} - 38 q^{19} + 117 q^{21} + 20 q^{22} + 155 q^{23}+ \cdots + 352 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 6.15207 1.18397 0.591983 0.805950i \(-0.298345\pi\)
0.591983 + 0.805950i \(0.298345\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 12.3041 0.837190
\(7\) −21.8479 −1.17968 −0.589839 0.807521i \(-0.700809\pi\)
−0.589839 + 0.807521i \(0.700809\pi\)
\(8\) 8.00000 0.353553
\(9\) 10.8479 0.401775
\(10\) 0 0
\(11\) −8.30413 −0.227617 −0.113809 0.993503i \(-0.536305\pi\)
−0.113809 + 0.993503i \(0.536305\pi\)
\(12\) 24.6083 0.591983
\(13\) −53.0645 −1.13211 −0.566055 0.824367i \(-0.691531\pi\)
−0.566055 + 0.824367i \(0.691531\pi\)
\(14\) −43.6959 −0.834158
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −74.2810 −1.05975 −0.529876 0.848075i \(-0.677762\pi\)
−0.529876 + 0.848075i \(0.677762\pi\)
\(18\) 21.6959 0.284098
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −134.410 −1.39670
\(22\) −16.6083 −0.160950
\(23\) 163.977 1.48659 0.743294 0.668964i \(-0.233262\pi\)
0.743294 + 0.668964i \(0.233262\pi\)
\(24\) 49.2165 0.418595
\(25\) 0 0
\(26\) −106.129 −0.800523
\(27\) −99.3686 −0.708278
\(28\) −87.3917 −0.589839
\(29\) −232.410 −1.48819 −0.744094 0.668075i \(-0.767118\pi\)
−0.744094 + 0.668075i \(0.767118\pi\)
\(30\) 0 0
\(31\) 98.4331 0.570294 0.285147 0.958484i \(-0.407958\pi\)
0.285147 + 0.958484i \(0.407958\pi\)
\(32\) 32.0000 0.176777
\(33\) −51.0876 −0.269491
\(34\) −148.562 −0.749358
\(35\) 0 0
\(36\) 43.3917 0.200888
\(37\) −296.433 −1.31712 −0.658558 0.752530i \(-0.728833\pi\)
−0.658558 + 0.752530i \(0.728833\pi\)
\(38\) −38.0000 −0.162221
\(39\) −326.456 −1.34038
\(40\) 0 0
\(41\) −434.912 −1.65663 −0.828316 0.560261i \(-0.810701\pi\)
−0.828316 + 0.560261i \(0.810701\pi\)
\(42\) −268.820 −0.987615
\(43\) 171.299 0.607509 0.303755 0.952750i \(-0.401760\pi\)
0.303755 + 0.952750i \(0.401760\pi\)
\(44\) −33.2165 −0.113809
\(45\) 0 0
\(46\) 327.954 1.05118
\(47\) 366.083 1.13614 0.568071 0.822980i \(-0.307690\pi\)
0.568071 + 0.822980i \(0.307690\pi\)
\(48\) 98.4331 0.295991
\(49\) 134.332 0.391639
\(50\) 0 0
\(51\) −456.982 −1.25471
\(52\) −212.258 −0.566055
\(53\) −138.631 −0.359292 −0.179646 0.983731i \(-0.557495\pi\)
−0.179646 + 0.983731i \(0.557495\pi\)
\(54\) −198.737 −0.500828
\(55\) 0 0
\(56\) −174.783 −0.417079
\(57\) −116.889 −0.271620
\(58\) −464.820 −1.05231
\(59\) 572.797 1.26393 0.631964 0.774997i \(-0.282249\pi\)
0.631964 + 0.774997i \(0.282249\pi\)
\(60\) 0 0
\(61\) −632.691 −1.32800 −0.663998 0.747734i \(-0.731142\pi\)
−0.663998 + 0.747734i \(0.731142\pi\)
\(62\) 196.866 0.403258
\(63\) −237.005 −0.473965
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −102.175 −0.190559
\(67\) 183.461 0.334527 0.167264 0.985912i \(-0.446507\pi\)
0.167264 + 0.985912i \(0.446507\pi\)
\(68\) −297.124 −0.529876
\(69\) 1008.80 1.76007
\(70\) 0 0
\(71\) 56.6545 0.0946994 0.0473497 0.998878i \(-0.484922\pi\)
0.0473497 + 0.998878i \(0.484922\pi\)
\(72\) 86.7835 0.142049
\(73\) −68.1521 −0.109268 −0.0546342 0.998506i \(-0.517399\pi\)
−0.0546342 + 0.998506i \(0.517399\pi\)
\(74\) −592.866 −0.931342
\(75\) 0 0
\(76\) −76.0000 −0.114708
\(77\) 181.428 0.268515
\(78\) −652.912 −0.947792
\(79\) −332.820 −0.473989 −0.236995 0.971511i \(-0.576162\pi\)
−0.236995 + 0.971511i \(0.576162\pi\)
\(80\) 0 0
\(81\) −904.217 −1.24035
\(82\) −869.825 −1.17142
\(83\) −1152.91 −1.52468 −0.762341 0.647176i \(-0.775950\pi\)
−0.762341 + 0.647176i \(0.775950\pi\)
\(84\) −537.640 −0.698349
\(85\) 0 0
\(86\) 342.598 0.429574
\(87\) −1429.80 −1.76196
\(88\) −66.4331 −0.0804749
\(89\) −368.479 −0.438862 −0.219431 0.975628i \(-0.570420\pi\)
−0.219431 + 0.975628i \(0.570420\pi\)
\(90\) 0 0
\(91\) 1159.35 1.33553
\(92\) 655.908 0.743294
\(93\) 605.567 0.675208
\(94\) 732.165 0.803373
\(95\) 0 0
\(96\) 196.866 0.209298
\(97\) 426.443 0.446378 0.223189 0.974775i \(-0.428353\pi\)
0.223189 + 0.974775i \(0.428353\pi\)
\(98\) 268.664 0.276931
\(99\) −90.0827 −0.0914510
\(100\) 0 0
\(101\) −403.124 −0.397152 −0.198576 0.980086i \(-0.563632\pi\)
−0.198576 + 0.980086i \(0.563632\pi\)
\(102\) −913.964 −0.887214
\(103\) 1135.68 1.08642 0.543211 0.839596i \(-0.317208\pi\)
0.543211 + 0.839596i \(0.317208\pi\)
\(104\) −424.516 −0.400262
\(105\) 0 0
\(106\) −277.263 −0.254058
\(107\) 380.096 0.343414 0.171707 0.985148i \(-0.445072\pi\)
0.171707 + 0.985148i \(0.445072\pi\)
\(108\) −397.474 −0.354139
\(109\) 1180.74 1.03756 0.518782 0.854907i \(-0.326386\pi\)
0.518782 + 0.854907i \(0.326386\pi\)
\(110\) 0 0
\(111\) −1823.68 −1.55942
\(112\) −349.567 −0.294919
\(113\) 1132.51 0.942807 0.471404 0.881918i \(-0.343748\pi\)
0.471404 + 0.881918i \(0.343748\pi\)
\(114\) −233.779 −0.192065
\(115\) 0 0
\(116\) −929.640 −0.744094
\(117\) −575.640 −0.454854
\(118\) 1145.59 0.893733
\(119\) 1622.89 1.25017
\(120\) 0 0
\(121\) −1262.04 −0.948190
\(122\) −1265.38 −0.939035
\(123\) −2675.61 −1.96140
\(124\) 393.732 0.285147
\(125\) 0 0
\(126\) −474.010 −0.335144
\(127\) 40.0462 0.0279806 0.0139903 0.999902i \(-0.495547\pi\)
0.0139903 + 0.999902i \(0.495547\pi\)
\(128\) 128.000 0.0883883
\(129\) 1053.84 0.719270
\(130\) 0 0
\(131\) −177.898 −0.118649 −0.0593244 0.998239i \(-0.518895\pi\)
−0.0593244 + 0.998239i \(0.518895\pi\)
\(132\) −204.350 −0.134746
\(133\) 415.111 0.270637
\(134\) 366.922 0.236547
\(135\) 0 0
\(136\) −594.248 −0.374679
\(137\) 24.7603 0.0154410 0.00772050 0.999970i \(-0.497542\pi\)
0.00772050 + 0.999970i \(0.497542\pi\)
\(138\) 2017.59 1.24456
\(139\) 2867.21 1.74959 0.874796 0.484491i \(-0.160995\pi\)
0.874796 + 0.484491i \(0.160995\pi\)
\(140\) 0 0
\(141\) 2252.17 1.34515
\(142\) 113.309 0.0669626
\(143\) 440.655 0.257688
\(144\) 173.567 0.100444
\(145\) 0 0
\(146\) −136.304 −0.0772645
\(147\) 826.421 0.463687
\(148\) −1185.73 −0.658558
\(149\) 1949.35 1.07179 0.535895 0.844285i \(-0.319974\pi\)
0.535895 + 0.844285i \(0.319974\pi\)
\(150\) 0 0
\(151\) 1120.99 0.604136 0.302068 0.953286i \(-0.402323\pi\)
0.302068 + 0.953286i \(0.402323\pi\)
\(152\) −152.000 −0.0811107
\(153\) −805.795 −0.425782
\(154\) 362.856 0.189869
\(155\) 0 0
\(156\) −1305.82 −0.670190
\(157\) 2360.23 1.19979 0.599894 0.800079i \(-0.295209\pi\)
0.599894 + 0.800079i \(0.295209\pi\)
\(158\) −665.640 −0.335161
\(159\) −852.870 −0.425390
\(160\) 0 0
\(161\) −3582.56 −1.75370
\(162\) −1808.43 −0.877061
\(163\) −861.825 −0.414131 −0.207065 0.978327i \(-0.566391\pi\)
−0.207065 + 0.978327i \(0.566391\pi\)
\(164\) −1739.65 −0.828316
\(165\) 0 0
\(166\) −2305.82 −1.07811
\(167\) −1686.51 −0.781472 −0.390736 0.920503i \(-0.627779\pi\)
−0.390736 + 0.920503i \(0.627779\pi\)
\(168\) −1075.28 −0.493807
\(169\) 618.838 0.281674
\(170\) 0 0
\(171\) −206.111 −0.0921736
\(172\) 685.197 0.303755
\(173\) 3191.44 1.40255 0.701273 0.712893i \(-0.252616\pi\)
0.701273 + 0.712893i \(0.252616\pi\)
\(174\) −2859.60 −1.24590
\(175\) 0 0
\(176\) −132.866 −0.0569043
\(177\) 3523.88 1.49645
\(178\) −736.959 −0.310322
\(179\) −1229.49 −0.513389 −0.256695 0.966493i \(-0.582633\pi\)
−0.256695 + 0.966493i \(0.582633\pi\)
\(180\) 0 0
\(181\) −3108.95 −1.27672 −0.638360 0.769738i \(-0.720387\pi\)
−0.638360 + 0.769738i \(0.720387\pi\)
\(182\) 2318.70 0.944359
\(183\) −3892.36 −1.57230
\(184\) 1311.82 0.525589
\(185\) 0 0
\(186\) 1211.13 0.477444
\(187\) 616.840 0.241218
\(188\) 1464.33 0.568071
\(189\) 2171.00 0.835539
\(190\) 0 0
\(191\) −1415.48 −0.536233 −0.268117 0.963386i \(-0.586401\pi\)
−0.268117 + 0.963386i \(0.586401\pi\)
\(192\) 393.732 0.147996
\(193\) −1443.40 −0.538333 −0.269167 0.963094i \(-0.586748\pi\)
−0.269167 + 0.963094i \(0.586748\pi\)
\(194\) 852.886 0.315637
\(195\) 0 0
\(196\) 537.329 0.195819
\(197\) −5271.92 −1.90664 −0.953322 0.301954i \(-0.902361\pi\)
−0.953322 + 0.301954i \(0.902361\pi\)
\(198\) −180.165 −0.0646656
\(199\) −2510.19 −0.894183 −0.447091 0.894488i \(-0.647540\pi\)
−0.447091 + 0.894488i \(0.647540\pi\)
\(200\) 0 0
\(201\) 1128.67 0.396069
\(202\) −806.248 −0.280829
\(203\) 5077.68 1.75558
\(204\) −1827.93 −0.627355
\(205\) 0 0
\(206\) 2271.35 0.768217
\(207\) 1778.81 0.597275
\(208\) −849.032 −0.283028
\(209\) 157.779 0.0522190
\(210\) 0 0
\(211\) 1854.44 0.605046 0.302523 0.953142i \(-0.402171\pi\)
0.302523 + 0.953142i \(0.402171\pi\)
\(212\) −554.526 −0.179646
\(213\) 348.542 0.112121
\(214\) 760.192 0.242830
\(215\) 0 0
\(216\) −794.949 −0.250414
\(217\) −2150.56 −0.672763
\(218\) 2361.48 0.733668
\(219\) −419.276 −0.129370
\(220\) 0 0
\(221\) 3941.68 1.19976
\(222\) −3647.35 −1.10268
\(223\) −1880.34 −0.564649 −0.282325 0.959319i \(-0.591105\pi\)
−0.282325 + 0.959319i \(0.591105\pi\)
\(224\) −699.134 −0.208539
\(225\) 0 0
\(226\) 2265.01 0.666665
\(227\) −1799.23 −0.526075 −0.263038 0.964786i \(-0.584724\pi\)
−0.263038 + 0.964786i \(0.584724\pi\)
\(228\) −467.557 −0.135810
\(229\) 4835.34 1.39532 0.697660 0.716429i \(-0.254224\pi\)
0.697660 + 0.716429i \(0.254224\pi\)
\(230\) 0 0
\(231\) 1116.16 0.317913
\(232\) −1859.28 −0.526154
\(233\) −865.299 −0.243295 −0.121647 0.992573i \(-0.538818\pi\)
−0.121647 + 0.992573i \(0.538818\pi\)
\(234\) −1151.28 −0.321630
\(235\) 0 0
\(236\) 2291.19 0.631964
\(237\) −2047.53 −0.561187
\(238\) 3245.77 0.884001
\(239\) −4764.27 −1.28943 −0.644717 0.764421i \(-0.723025\pi\)
−0.644717 + 0.764421i \(0.723025\pi\)
\(240\) 0 0
\(241\) 615.336 0.164470 0.0822350 0.996613i \(-0.473794\pi\)
0.0822350 + 0.996613i \(0.473794\pi\)
\(242\) −2524.08 −0.670472
\(243\) −2879.85 −0.760257
\(244\) −2530.76 −0.663998
\(245\) 0 0
\(246\) −5351.22 −1.38692
\(247\) 1008.22 0.259724
\(248\) 787.465 0.201629
\(249\) −7092.79 −1.80517
\(250\) 0 0
\(251\) −1658.08 −0.416959 −0.208480 0.978027i \(-0.566852\pi\)
−0.208480 + 0.978027i \(0.566852\pi\)
\(252\) −948.020 −0.236983
\(253\) −1361.69 −0.338373
\(254\) 80.0925 0.0197852
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3446.12 −0.836432 −0.418216 0.908348i \(-0.637344\pi\)
−0.418216 + 0.908348i \(0.637344\pi\)
\(258\) 2107.69 0.508601
\(259\) 6476.45 1.55377
\(260\) 0 0
\(261\) −2521.17 −0.597917
\(262\) −355.795 −0.0838974
\(263\) −5755.80 −1.34950 −0.674748 0.738048i \(-0.735748\pi\)
−0.674748 + 0.738048i \(0.735748\pi\)
\(264\) −408.701 −0.0952795
\(265\) 0 0
\(266\) 830.221 0.191369
\(267\) −2266.91 −0.519598
\(268\) 733.844 0.167264
\(269\) 2257.28 0.511631 0.255816 0.966726i \(-0.417656\pi\)
0.255816 + 0.966726i \(0.417656\pi\)
\(270\) 0 0
\(271\) 7012.13 1.57180 0.785898 0.618357i \(-0.212201\pi\)
0.785898 + 0.618357i \(0.212201\pi\)
\(272\) −1188.50 −0.264938
\(273\) 7132.39 1.58122
\(274\) 49.5207 0.0109184
\(275\) 0 0
\(276\) 4035.19 0.880035
\(277\) 372.810 0.0808664 0.0404332 0.999182i \(-0.487126\pi\)
0.0404332 + 0.999182i \(0.487126\pi\)
\(278\) 5734.41 1.23715
\(279\) 1067.80 0.229130
\(280\) 0 0
\(281\) −1888.96 −0.401017 −0.200508 0.979692i \(-0.564259\pi\)
−0.200508 + 0.979692i \(0.564259\pi\)
\(282\) 4504.33 0.951167
\(283\) 3884.43 0.815920 0.407960 0.913000i \(-0.366240\pi\)
0.407960 + 0.913000i \(0.366240\pi\)
\(284\) 226.618 0.0473497
\(285\) 0 0
\(286\) 881.309 0.182213
\(287\) 9501.94 1.95429
\(288\) 347.134 0.0710245
\(289\) 604.668 0.123075
\(290\) 0 0
\(291\) 2623.51 0.528497
\(292\) −272.608 −0.0546342
\(293\) 1273.01 0.253823 0.126911 0.991914i \(-0.459494\pi\)
0.126911 + 0.991914i \(0.459494\pi\)
\(294\) 1652.84 0.327876
\(295\) 0 0
\(296\) −2371.46 −0.465671
\(297\) 825.170 0.161216
\(298\) 3898.69 0.757869
\(299\) −8701.35 −1.68298
\(300\) 0 0
\(301\) −3742.53 −0.716665
\(302\) 2241.97 0.427188
\(303\) −2480.05 −0.470214
\(304\) −304.000 −0.0573539
\(305\) 0 0
\(306\) −1611.59 −0.301074
\(307\) −819.153 −0.152285 −0.0761426 0.997097i \(-0.524260\pi\)
−0.0761426 + 0.997097i \(0.524260\pi\)
\(308\) 725.713 0.134258
\(309\) 6986.76 1.28629
\(310\) 0 0
\(311\) 2104.67 0.383745 0.191872 0.981420i \(-0.438544\pi\)
0.191872 + 0.981420i \(0.438544\pi\)
\(312\) −2611.65 −0.473896
\(313\) −2395.47 −0.432587 −0.216293 0.976328i \(-0.569397\pi\)
−0.216293 + 0.976328i \(0.569397\pi\)
\(314\) 4720.46 0.848378
\(315\) 0 0
\(316\) −1331.28 −0.236995
\(317\) −2158.23 −0.382393 −0.191196 0.981552i \(-0.561237\pi\)
−0.191196 + 0.981552i \(0.561237\pi\)
\(318\) −1705.74 −0.300796
\(319\) 1929.96 0.338737
\(320\) 0 0
\(321\) 2338.38 0.406590
\(322\) −7165.11 −1.24005
\(323\) 1411.34 0.243124
\(324\) −3616.87 −0.620176
\(325\) 0 0
\(326\) −1723.65 −0.292835
\(327\) 7264.00 1.22844
\(328\) −3479.30 −0.585708
\(329\) −7998.15 −1.34028
\(330\) 0 0
\(331\) 517.782 0.0859815 0.0429908 0.999075i \(-0.486311\pi\)
0.0429908 + 0.999075i \(0.486311\pi\)
\(332\) −4611.65 −0.762341
\(333\) −3215.69 −0.529185
\(334\) −3373.01 −0.552584
\(335\) 0 0
\(336\) −2150.56 −0.349174
\(337\) −6503.63 −1.05126 −0.525631 0.850713i \(-0.676171\pi\)
−0.525631 + 0.850713i \(0.676171\pi\)
\(338\) 1237.68 0.199174
\(339\) 6967.25 1.11625
\(340\) 0 0
\(341\) −817.402 −0.129809
\(342\) −412.221 −0.0651766
\(343\) 4558.96 0.717670
\(344\) 1370.39 0.214787
\(345\) 0 0
\(346\) 6382.87 0.991749
\(347\) −6058.33 −0.937257 −0.468628 0.883395i \(-0.655252\pi\)
−0.468628 + 0.883395i \(0.655252\pi\)
\(348\) −5719.21 −0.880982
\(349\) −10955.1 −1.68027 −0.840135 0.542377i \(-0.817524\pi\)
−0.840135 + 0.542377i \(0.817524\pi\)
\(350\) 0 0
\(351\) 5272.94 0.801849
\(352\) −265.732 −0.0402374
\(353\) 1806.43 0.272369 0.136185 0.990683i \(-0.456516\pi\)
0.136185 + 0.990683i \(0.456516\pi\)
\(354\) 7047.77 1.05815
\(355\) 0 0
\(356\) −1473.92 −0.219431
\(357\) 9984.11 1.48015
\(358\) −2458.99 −0.363021
\(359\) −7964.50 −1.17089 −0.585446 0.810711i \(-0.699081\pi\)
−0.585446 + 0.810711i \(0.699081\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) −6217.90 −0.902777
\(363\) −7764.16 −1.12263
\(364\) 4637.40 0.667763
\(365\) 0 0
\(366\) −7784.71 −1.11179
\(367\) 7311.58 1.03995 0.519974 0.854182i \(-0.325941\pi\)
0.519974 + 0.854182i \(0.325941\pi\)
\(368\) 2623.63 0.371647
\(369\) −4717.90 −0.665594
\(370\) 0 0
\(371\) 3028.81 0.423849
\(372\) 2422.27 0.337604
\(373\) −5518.38 −0.766035 −0.383017 0.923741i \(-0.625115\pi\)
−0.383017 + 0.923741i \(0.625115\pi\)
\(374\) 1233.68 0.170567
\(375\) 0 0
\(376\) 2928.66 0.401687
\(377\) 12332.7 1.68479
\(378\) 4342.00 0.590815
\(379\) −1139.97 −0.154502 −0.0772512 0.997012i \(-0.524614\pi\)
−0.0772512 + 0.997012i \(0.524614\pi\)
\(380\) 0 0
\(381\) 246.367 0.0331280
\(382\) −2830.96 −0.379174
\(383\) 10409.5 1.38877 0.694385 0.719604i \(-0.255677\pi\)
0.694385 + 0.719604i \(0.255677\pi\)
\(384\) 787.465 0.104649
\(385\) 0 0
\(386\) −2886.80 −0.380659
\(387\) 1858.24 0.244082
\(388\) 1705.77 0.223189
\(389\) 10471.2 1.36481 0.682404 0.730975i \(-0.260934\pi\)
0.682404 + 0.730975i \(0.260934\pi\)
\(390\) 0 0
\(391\) −12180.4 −1.57542
\(392\) 1074.66 0.138465
\(393\) −1094.44 −0.140476
\(394\) −10543.8 −1.34820
\(395\) 0 0
\(396\) −360.331 −0.0457255
\(397\) 9588.68 1.21220 0.606098 0.795390i \(-0.292734\pi\)
0.606098 + 0.795390i \(0.292734\pi\)
\(398\) −5020.37 −0.632283
\(399\) 2553.79 0.320424
\(400\) 0 0
\(401\) 8549.30 1.06467 0.532334 0.846535i \(-0.321315\pi\)
0.532334 + 0.846535i \(0.321315\pi\)
\(402\) 2257.33 0.280063
\(403\) −5223.30 −0.645635
\(404\) −1612.50 −0.198576
\(405\) 0 0
\(406\) 10155.4 1.24138
\(407\) 2461.62 0.299798
\(408\) −3655.85 −0.443607
\(409\) 266.960 0.0322746 0.0161373 0.999870i \(-0.494863\pi\)
0.0161373 + 0.999870i \(0.494863\pi\)
\(410\) 0 0
\(411\) 152.327 0.0182816
\(412\) 4542.71 0.543211
\(413\) −12514.4 −1.49103
\(414\) 3557.62 0.422337
\(415\) 0 0
\(416\) −1698.06 −0.200131
\(417\) 17639.2 2.07146
\(418\) 315.557 0.0369244
\(419\) 8643.83 1.00783 0.503913 0.863755i \(-0.331893\pi\)
0.503913 + 0.863755i \(0.331893\pi\)
\(420\) 0 0
\(421\) −16801.3 −1.94500 −0.972499 0.232905i \(-0.925177\pi\)
−0.972499 + 0.232905i \(0.925177\pi\)
\(422\) 3708.87 0.427832
\(423\) 3971.24 0.456474
\(424\) −1109.05 −0.127029
\(425\) 0 0
\(426\) 697.085 0.0792814
\(427\) 13823.0 1.56661
\(428\) 1520.38 0.171707
\(429\) 2710.94 0.305094
\(430\) 0 0
\(431\) 12053.5 1.34710 0.673548 0.739144i \(-0.264769\pi\)
0.673548 + 0.739144i \(0.264769\pi\)
\(432\) −1589.90 −0.177069
\(433\) −9034.61 −1.00271 −0.501357 0.865240i \(-0.667166\pi\)
−0.501357 + 0.865240i \(0.667166\pi\)
\(434\) −4301.12 −0.475715
\(435\) 0 0
\(436\) 4722.96 0.518782
\(437\) −3115.56 −0.341047
\(438\) −838.552 −0.0914785
\(439\) 3008.87 0.327120 0.163560 0.986533i \(-0.447702\pi\)
0.163560 + 0.986533i \(0.447702\pi\)
\(440\) 0 0
\(441\) 1457.23 0.157351
\(442\) 7883.37 0.848356
\(443\) 229.594 0.0246237 0.0123119 0.999924i \(-0.496081\pi\)
0.0123119 + 0.999924i \(0.496081\pi\)
\(444\) −7294.71 −0.779710
\(445\) 0 0
\(446\) −3760.68 −0.399267
\(447\) 11992.5 1.26896
\(448\) −1398.27 −0.147460
\(449\) −7559.44 −0.794548 −0.397274 0.917700i \(-0.630044\pi\)
−0.397274 + 0.917700i \(0.630044\pi\)
\(450\) 0 0
\(451\) 3611.57 0.377078
\(452\) 4530.02 0.471404
\(453\) 6896.38 0.715276
\(454\) −3598.46 −0.371991
\(455\) 0 0
\(456\) −935.114 −0.0960323
\(457\) −11556.4 −1.18290 −0.591449 0.806343i \(-0.701444\pi\)
−0.591449 + 0.806343i \(0.701444\pi\)
\(458\) 9670.69 0.986641
\(459\) 7381.20 0.750599
\(460\) 0 0
\(461\) 9191.58 0.928622 0.464311 0.885672i \(-0.346302\pi\)
0.464311 + 0.885672i \(0.346302\pi\)
\(462\) 2232.32 0.224798
\(463\) −1356.03 −0.136113 −0.0680564 0.997681i \(-0.521680\pi\)
−0.0680564 + 0.997681i \(0.521680\pi\)
\(464\) −3718.56 −0.372047
\(465\) 0 0
\(466\) −1730.60 −0.172035
\(467\) 14808.9 1.46740 0.733700 0.679473i \(-0.237792\pi\)
0.733700 + 0.679473i \(0.237792\pi\)
\(468\) −2302.56 −0.227427
\(469\) −4008.25 −0.394635
\(470\) 0 0
\(471\) 14520.3 1.42051
\(472\) 4582.37 0.446866
\(473\) −1422.49 −0.138280
\(474\) −4095.06 −0.396819
\(475\) 0 0
\(476\) 6491.55 0.625083
\(477\) −1503.86 −0.144355
\(478\) −9528.54 −0.911768
\(479\) 9834.66 0.938115 0.469058 0.883168i \(-0.344594\pi\)
0.469058 + 0.883168i \(0.344594\pi\)
\(480\) 0 0
\(481\) 15730.1 1.49112
\(482\) 1230.67 0.116298
\(483\) −22040.1 −2.07632
\(484\) −5048.17 −0.474095
\(485\) 0 0
\(486\) −5759.70 −0.537583
\(487\) −3687.82 −0.343144 −0.171572 0.985172i \(-0.554885\pi\)
−0.171572 + 0.985172i \(0.554885\pi\)
\(488\) −5061.53 −0.469518
\(489\) −5302.00 −0.490317
\(490\) 0 0
\(491\) −11197.4 −1.02919 −0.514593 0.857435i \(-0.672057\pi\)
−0.514593 + 0.857435i \(0.672057\pi\)
\(492\) −10702.4 −0.980698
\(493\) 17263.6 1.57711
\(494\) 2016.45 0.183653
\(495\) 0 0
\(496\) 1574.93 0.142573
\(497\) −1237.78 −0.111715
\(498\) −14185.6 −1.27645
\(499\) −12101.6 −1.08566 −0.542829 0.839843i \(-0.682647\pi\)
−0.542829 + 0.839843i \(0.682647\pi\)
\(500\) 0 0
\(501\) −10375.5 −0.925236
\(502\) −3316.15 −0.294835
\(503\) 7266.58 0.644136 0.322068 0.946716i \(-0.395622\pi\)
0.322068 + 0.946716i \(0.395622\pi\)
\(504\) −1896.04 −0.167572
\(505\) 0 0
\(506\) −2723.37 −0.239266
\(507\) 3807.13 0.333493
\(508\) 160.185 0.0139903
\(509\) 2564.99 0.223362 0.111681 0.993744i \(-0.464376\pi\)
0.111681 + 0.993744i \(0.464376\pi\)
\(510\) 0 0
\(511\) 1488.98 0.128902
\(512\) 512.000 0.0441942
\(513\) 1888.00 0.162490
\(514\) −6892.24 −0.591447
\(515\) 0 0
\(516\) 4215.38 0.359635
\(517\) −3040.00 −0.258606
\(518\) 12952.9 1.09868
\(519\) 19633.9 1.66057
\(520\) 0 0
\(521\) 11254.6 0.946401 0.473201 0.880955i \(-0.343099\pi\)
0.473201 + 0.880955i \(0.343099\pi\)
\(522\) −5042.34 −0.422791
\(523\) 18357.1 1.53480 0.767401 0.641168i \(-0.221550\pi\)
0.767401 + 0.641168i \(0.221550\pi\)
\(524\) −711.591 −0.0593244
\(525\) 0 0
\(526\) −11511.6 −0.954238
\(527\) −7311.71 −0.604370
\(528\) −817.402 −0.0673728
\(529\) 14721.4 1.20995
\(530\) 0 0
\(531\) 6213.66 0.507815
\(532\) 1660.44 0.135318
\(533\) 23078.4 1.87549
\(534\) −4533.82 −0.367411
\(535\) 0 0
\(536\) 1467.69 0.118273
\(537\) −7563.93 −0.607836
\(538\) 4514.56 0.361778
\(539\) −1115.51 −0.0891438
\(540\) 0 0
\(541\) 11381.8 0.904510 0.452255 0.891889i \(-0.350620\pi\)
0.452255 + 0.891889i \(0.350620\pi\)
\(542\) 14024.3 1.11143
\(543\) −19126.5 −1.51159
\(544\) −2376.99 −0.187340
\(545\) 0 0
\(546\) 14264.8 1.11809
\(547\) 8996.84 0.703248 0.351624 0.936141i \(-0.385629\pi\)
0.351624 + 0.936141i \(0.385629\pi\)
\(548\) 99.0413 0.00772050
\(549\) −6863.39 −0.533556
\(550\) 0 0
\(551\) 4415.79 0.341414
\(552\) 8070.37 0.622279
\(553\) 7271.43 0.559155
\(554\) 745.620 0.0571812
\(555\) 0 0
\(556\) 11468.8 0.874796
\(557\) −10759.8 −0.818507 −0.409253 0.912421i \(-0.634211\pi\)
−0.409253 + 0.912421i \(0.634211\pi\)
\(558\) 2135.59 0.162019
\(559\) −9089.90 −0.687767
\(560\) 0 0
\(561\) 3794.84 0.285594
\(562\) −3777.91 −0.283562
\(563\) −25381.8 −1.90003 −0.950015 0.312205i \(-0.898932\pi\)
−0.950015 + 0.312205i \(0.898932\pi\)
\(564\) 9008.66 0.672576
\(565\) 0 0
\(566\) 7768.86 0.576943
\(567\) 19755.3 1.46322
\(568\) 453.236 0.0334813
\(569\) −5546.00 −0.408612 −0.204306 0.978907i \(-0.565494\pi\)
−0.204306 + 0.978907i \(0.565494\pi\)
\(570\) 0 0
\(571\) 7714.96 0.565431 0.282715 0.959204i \(-0.408765\pi\)
0.282715 + 0.959204i \(0.408765\pi\)
\(572\) 1762.62 0.128844
\(573\) −8708.13 −0.634882
\(574\) 19003.9 1.38189
\(575\) 0 0
\(576\) 694.268 0.0502219
\(577\) −21335.1 −1.53933 −0.769665 0.638448i \(-0.779577\pi\)
−0.769665 + 0.638448i \(0.779577\pi\)
\(578\) 1209.34 0.0870273
\(579\) −8879.90 −0.637368
\(580\) 0 0
\(581\) 25188.8 1.79863
\(582\) 5247.01 0.373704
\(583\) 1151.21 0.0817811
\(584\) −545.217 −0.0386322
\(585\) 0 0
\(586\) 2546.02 0.179480
\(587\) −12370.9 −0.869846 −0.434923 0.900468i \(-0.643224\pi\)
−0.434923 + 0.900468i \(0.643224\pi\)
\(588\) 3305.68 0.231844
\(589\) −1870.23 −0.130834
\(590\) 0 0
\(591\) −32433.2 −2.25740
\(592\) −4742.93 −0.329279
\(593\) −12982.5 −0.899034 −0.449517 0.893272i \(-0.648404\pi\)
−0.449517 + 0.893272i \(0.648404\pi\)
\(594\) 1650.34 0.113997
\(595\) 0 0
\(596\) 7797.38 0.535895
\(597\) −15442.8 −1.05868
\(598\) −17402.7 −1.19005
\(599\) 13163.7 0.897921 0.448960 0.893552i \(-0.351794\pi\)
0.448960 + 0.893552i \(0.351794\pi\)
\(600\) 0 0
\(601\) −29325.4 −1.99036 −0.995180 0.0980640i \(-0.968735\pi\)
−0.995180 + 0.0980640i \(0.968735\pi\)
\(602\) −7485.07 −0.506758
\(603\) 1990.17 0.134405
\(604\) 4483.94 0.302068
\(605\) 0 0
\(606\) −4960.09 −0.332492
\(607\) 2170.11 0.145110 0.0725552 0.997364i \(-0.476885\pi\)
0.0725552 + 0.997364i \(0.476885\pi\)
\(608\) −608.000 −0.0405554
\(609\) 31238.2 2.07855
\(610\) 0 0
\(611\) −19426.0 −1.28624
\(612\) −3223.18 −0.212891
\(613\) 4917.96 0.324036 0.162018 0.986788i \(-0.448200\pi\)
0.162018 + 0.986788i \(0.448200\pi\)
\(614\) −1638.31 −0.107682
\(615\) 0 0
\(616\) 1451.43 0.0949344
\(617\) −24763.5 −1.61579 −0.807894 0.589328i \(-0.799393\pi\)
−0.807894 + 0.589328i \(0.799393\pi\)
\(618\) 13973.5 0.909542
\(619\) −27552.0 −1.78902 −0.894512 0.447043i \(-0.852477\pi\)
−0.894512 + 0.447043i \(0.852477\pi\)
\(620\) 0 0
\(621\) −16294.2 −1.05292
\(622\) 4209.33 0.271348
\(623\) 8050.51 0.517716
\(624\) −5223.30 −0.335095
\(625\) 0 0
\(626\) −4790.93 −0.305885
\(627\) 970.664 0.0618255
\(628\) 9440.91 0.599894
\(629\) 22019.3 1.39582
\(630\) 0 0
\(631\) 377.839 0.0238376 0.0119188 0.999929i \(-0.496206\pi\)
0.0119188 + 0.999929i \(0.496206\pi\)
\(632\) −2662.56 −0.167581
\(633\) 11408.6 0.716354
\(634\) −4316.47 −0.270393
\(635\) 0 0
\(636\) −3411.48 −0.212695
\(637\) −7128.27 −0.443379
\(638\) 3859.93 0.239523
\(639\) 614.584 0.0380479
\(640\) 0 0
\(641\) −14047.3 −0.865576 −0.432788 0.901496i \(-0.642470\pi\)
−0.432788 + 0.901496i \(0.642470\pi\)
\(642\) 4676.75 0.287503
\(643\) −5768.94 −0.353818 −0.176909 0.984227i \(-0.556610\pi\)
−0.176909 + 0.984227i \(0.556610\pi\)
\(644\) −14330.2 −0.876848
\(645\) 0 0
\(646\) 2822.68 0.171915
\(647\) −4568.59 −0.277604 −0.138802 0.990320i \(-0.544325\pi\)
−0.138802 + 0.990320i \(0.544325\pi\)
\(648\) −7233.73 −0.438531
\(649\) −4756.58 −0.287692
\(650\) 0 0
\(651\) −13230.4 −0.796528
\(652\) −3447.30 −0.207065
\(653\) 16532.7 0.990774 0.495387 0.868672i \(-0.335026\pi\)
0.495387 + 0.868672i \(0.335026\pi\)
\(654\) 14528.0 0.868638
\(655\) 0 0
\(656\) −6958.60 −0.414158
\(657\) −739.309 −0.0439014
\(658\) −15996.3 −0.947721
\(659\) −18630.0 −1.10125 −0.550624 0.834753i \(-0.685610\pi\)
−0.550624 + 0.834753i \(0.685610\pi\)
\(660\) 0 0
\(661\) 28851.3 1.69771 0.848854 0.528627i \(-0.177293\pi\)
0.848854 + 0.528627i \(0.177293\pi\)
\(662\) 1035.56 0.0607981
\(663\) 24249.5 1.42047
\(664\) −9223.30 −0.539056
\(665\) 0 0
\(666\) −6431.37 −0.374190
\(667\) −38109.9 −2.21232
\(668\) −6746.02 −0.390736
\(669\) −11568.0 −0.668525
\(670\) 0 0
\(671\) 5253.95 0.302275
\(672\) −4301.12 −0.246904
\(673\) 3873.41 0.221856 0.110928 0.993828i \(-0.464618\pi\)
0.110928 + 0.993828i \(0.464618\pi\)
\(674\) −13007.3 −0.743354
\(675\) 0 0
\(676\) 2475.35 0.140837
\(677\) −5025.24 −0.285282 −0.142641 0.989775i \(-0.545559\pi\)
−0.142641 + 0.989775i \(0.545559\pi\)
\(678\) 13934.5 0.789309
\(679\) −9316.90 −0.526583
\(680\) 0 0
\(681\) −11069.0 −0.622855
\(682\) −1634.80 −0.0917886
\(683\) 14157.0 0.793122 0.396561 0.918008i \(-0.370204\pi\)
0.396561 + 0.918008i \(0.370204\pi\)
\(684\) −824.443 −0.0460868
\(685\) 0 0
\(686\) 9117.92 0.507469
\(687\) 29747.4 1.65201
\(688\) 2740.79 0.151877
\(689\) 7356.40 0.406758
\(690\) 0 0
\(691\) −2437.65 −0.134200 −0.0671002 0.997746i \(-0.521375\pi\)
−0.0671002 + 0.997746i \(0.521375\pi\)
\(692\) 12765.7 0.701273
\(693\) 1968.12 0.107883
\(694\) −12116.7 −0.662741
\(695\) 0 0
\(696\) −11438.4 −0.622948
\(697\) 32305.7 1.75562
\(698\) −21910.2 −1.18813
\(699\) −5323.38 −0.288052
\(700\) 0 0
\(701\) 9496.96 0.511691 0.255845 0.966718i \(-0.417646\pi\)
0.255845 + 0.966718i \(0.417646\pi\)
\(702\) 10545.9 0.566993
\(703\) 5632.23 0.302167
\(704\) −531.465 −0.0284522
\(705\) 0 0
\(706\) 3612.85 0.192594
\(707\) 8807.43 0.468511
\(708\) 14095.5 0.748224
\(709\) 6350.33 0.336377 0.168189 0.985755i \(-0.446208\pi\)
0.168189 + 0.985755i \(0.446208\pi\)
\(710\) 0 0
\(711\) −3610.41 −0.190437
\(712\) −2947.83 −0.155161
\(713\) 16140.7 0.847792
\(714\) 19968.2 1.04663
\(715\) 0 0
\(716\) −4917.98 −0.256695
\(717\) −29310.1 −1.52665
\(718\) −15929.0 −0.827946
\(719\) −19722.6 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(720\) 0 0
\(721\) −24812.2 −1.28163
\(722\) 722.000 0.0372161
\(723\) 3785.59 0.194727
\(724\) −12435.8 −0.638360
\(725\) 0 0
\(726\) −15528.3 −0.793816
\(727\) −28325.8 −1.44504 −0.722520 0.691350i \(-0.757016\pi\)
−0.722520 + 0.691350i \(0.757016\pi\)
\(728\) 9274.79 0.472179
\(729\) 6696.82 0.340234
\(730\) 0 0
\(731\) −12724.3 −0.643809
\(732\) −15569.4 −0.786151
\(733\) −33981.8 −1.71234 −0.856170 0.516694i \(-0.827163\pi\)
−0.856170 + 0.516694i \(0.827163\pi\)
\(734\) 14623.2 0.735355
\(735\) 0 0
\(736\) 5247.26 0.262794
\(737\) −1523.49 −0.0761443
\(738\) −9435.80 −0.470646
\(739\) 9147.10 0.455320 0.227660 0.973741i \(-0.426893\pi\)
0.227660 + 0.973741i \(0.426893\pi\)
\(740\) 0 0
\(741\) 6202.67 0.307504
\(742\) 6057.62 0.299706
\(743\) 34159.2 1.68665 0.843324 0.537405i \(-0.180596\pi\)
0.843324 + 0.537405i \(0.180596\pi\)
\(744\) 4844.54 0.238722
\(745\) 0 0
\(746\) −11036.8 −0.541668
\(747\) −12506.7 −0.612579
\(748\) 2467.36 0.120609
\(749\) −8304.31 −0.405117
\(750\) 0 0
\(751\) 28361.8 1.37808 0.689038 0.724725i \(-0.258033\pi\)
0.689038 + 0.724725i \(0.258033\pi\)
\(752\) 5857.32 0.284035
\(753\) −10200.6 −0.493666
\(754\) 24665.4 1.19133
\(755\) 0 0
\(756\) 8683.99 0.417770
\(757\) −11464.9 −0.550462 −0.275231 0.961378i \(-0.588754\pi\)
−0.275231 + 0.961378i \(0.588754\pi\)
\(758\) −2279.94 −0.109250
\(759\) −8377.18 −0.400623
\(760\) 0 0
\(761\) 14289.3 0.680666 0.340333 0.940305i \(-0.389460\pi\)
0.340333 + 0.940305i \(0.389460\pi\)
\(762\) 492.734 0.0234250
\(763\) −25796.7 −1.22399
\(764\) −5661.92 −0.268117
\(765\) 0 0
\(766\) 20818.9 0.982008
\(767\) −30395.2 −1.43091
\(768\) 1574.93 0.0739979
\(769\) 100.811 0.00472734 0.00236367 0.999997i \(-0.499248\pi\)
0.00236367 + 0.999997i \(0.499248\pi\)
\(770\) 0 0
\(771\) −21200.8 −0.990307
\(772\) −5773.61 −0.269167
\(773\) −52.1073 −0.00242454 −0.00121227 0.999999i \(-0.500386\pi\)
−0.00121227 + 0.999999i \(0.500386\pi\)
\(774\) 3716.49 0.172592
\(775\) 0 0
\(776\) 3411.54 0.157819
\(777\) 39843.6 1.83961
\(778\) 20942.4 0.965065
\(779\) 8263.34 0.380057
\(780\) 0 0
\(781\) −470.467 −0.0215552
\(782\) −24360.7 −1.11399
\(783\) 23094.3 1.05405
\(784\) 2149.31 0.0979097
\(785\) 0 0
\(786\) −2188.88 −0.0993316
\(787\) −15261.8 −0.691266 −0.345633 0.938370i \(-0.612336\pi\)
−0.345633 + 0.938370i \(0.612336\pi\)
\(788\) −21087.7 −0.953322
\(789\) −35410.0 −1.59776
\(790\) 0 0
\(791\) −24742.9 −1.11221
\(792\) −720.662 −0.0323328
\(793\) 33573.4 1.50344
\(794\) 19177.4 0.857152
\(795\) 0 0
\(796\) −10040.7 −0.447091
\(797\) −24432.3 −1.08587 −0.542934 0.839775i \(-0.682687\pi\)
−0.542934 + 0.839775i \(0.682687\pi\)
\(798\) 5107.58 0.226574
\(799\) −27193.0 −1.20403
\(800\) 0 0
\(801\) −3997.24 −0.176324
\(802\) 17098.6 0.752834
\(803\) 565.944 0.0248714
\(804\) 4514.66 0.198035
\(805\) 0 0
\(806\) −10446.6 −0.456533
\(807\) 13886.9 0.605754
\(808\) −3224.99 −0.140414
\(809\) 3635.86 0.158010 0.0790050 0.996874i \(-0.474826\pi\)
0.0790050 + 0.996874i \(0.474826\pi\)
\(810\) 0 0
\(811\) 1087.93 0.0471051 0.0235526 0.999723i \(-0.492502\pi\)
0.0235526 + 0.999723i \(0.492502\pi\)
\(812\) 20310.7 0.877791
\(813\) 43139.1 1.86095
\(814\) 4923.24 0.211990
\(815\) 0 0
\(816\) −7311.71 −0.313678
\(817\) −3254.69 −0.139372
\(818\) 533.920 0.0228216
\(819\) 12576.5 0.536581
\(820\) 0 0
\(821\) 10953.7 0.465636 0.232818 0.972520i \(-0.425205\pi\)
0.232818 + 0.972520i \(0.425205\pi\)
\(822\) 304.655 0.0129271
\(823\) −13502.5 −0.571893 −0.285947 0.958246i \(-0.592308\pi\)
−0.285947 + 0.958246i \(0.592308\pi\)
\(824\) 9085.41 0.384108
\(825\) 0 0
\(826\) −25028.9 −1.05432
\(827\) −26812.4 −1.12740 −0.563699 0.825980i \(-0.690622\pi\)
−0.563699 + 0.825980i \(0.690622\pi\)
\(828\) 7115.24 0.298637
\(829\) −4497.94 −0.188444 −0.0942218 0.995551i \(-0.530036\pi\)
−0.0942218 + 0.995551i \(0.530036\pi\)
\(830\) 0 0
\(831\) 2293.55 0.0957430
\(832\) −3396.13 −0.141514
\(833\) −9978.33 −0.415040
\(834\) 35278.5 1.46474
\(835\) 0 0
\(836\) 631.114 0.0261095
\(837\) −9781.16 −0.403926
\(838\) 17287.7 0.712640
\(839\) 30324.9 1.24783 0.623917 0.781491i \(-0.285540\pi\)
0.623917 + 0.781491i \(0.285540\pi\)
\(840\) 0 0
\(841\) 29625.4 1.21470
\(842\) −33602.6 −1.37532
\(843\) −11621.0 −0.474790
\(844\) 7417.75 0.302523
\(845\) 0 0
\(846\) 7942.48 0.322776
\(847\) 27573.0 1.11856
\(848\) −2218.10 −0.0898230
\(849\) 23897.3 0.966022
\(850\) 0 0
\(851\) −48608.2 −1.95801
\(852\) 1394.17 0.0560604
\(853\) −17230.8 −0.691642 −0.345821 0.938300i \(-0.612400\pi\)
−0.345821 + 0.938300i \(0.612400\pi\)
\(854\) 27646.0 1.10776
\(855\) 0 0
\(856\) 3040.77 0.121415
\(857\) 6724.12 0.268018 0.134009 0.990980i \(-0.457215\pi\)
0.134009 + 0.990980i \(0.457215\pi\)
\(858\) 5421.87 0.215734
\(859\) −36183.5 −1.43721 −0.718606 0.695417i \(-0.755219\pi\)
−0.718606 + 0.695417i \(0.755219\pi\)
\(860\) 0 0
\(861\) 58456.6 2.31381
\(862\) 24107.1 0.952541
\(863\) −14350.8 −0.566056 −0.283028 0.959112i \(-0.591339\pi\)
−0.283028 + 0.959112i \(0.591339\pi\)
\(864\) −3179.80 −0.125207
\(865\) 0 0
\(866\) −18069.2 −0.709027
\(867\) 3719.96 0.145717
\(868\) −8602.24 −0.336381
\(869\) 2763.78 0.107888
\(870\) 0 0
\(871\) −9735.27 −0.378722
\(872\) 9445.93 0.366834
\(873\) 4626.02 0.179344
\(874\) −6231.12 −0.241157
\(875\) 0 0
\(876\) −1677.10 −0.0646851
\(877\) 42978.6 1.65483 0.827414 0.561592i \(-0.189811\pi\)
0.827414 + 0.561592i \(0.189811\pi\)
\(878\) 6017.74 0.231309
\(879\) 7831.65 0.300518
\(880\) 0 0
\(881\) −7298.75 −0.279116 −0.139558 0.990214i \(-0.544568\pi\)
−0.139558 + 0.990214i \(0.544568\pi\)
\(882\) 2914.45 0.111264
\(883\) −46722.1 −1.78066 −0.890331 0.455314i \(-0.849527\pi\)
−0.890331 + 0.455314i \(0.849527\pi\)
\(884\) 15766.7 0.599878
\(885\) 0 0
\(886\) 459.187 0.0174116
\(887\) −35268.7 −1.33507 −0.667535 0.744578i \(-0.732651\pi\)
−0.667535 + 0.744578i \(0.732651\pi\)
\(888\) −14589.4 −0.551338
\(889\) −874.928 −0.0330080
\(890\) 0 0
\(891\) 7508.74 0.282326
\(892\) −7521.35 −0.282325
\(893\) −6955.57 −0.260649
\(894\) 23985.0 0.897292
\(895\) 0 0
\(896\) −2796.54 −0.104270
\(897\) −53531.3 −1.99259
\(898\) −15118.9 −0.561830
\(899\) −22876.8 −0.848704
\(900\) 0 0
\(901\) 10297.7 0.380761
\(902\) 7223.14 0.266635
\(903\) −23024.3 −0.848507
\(904\) 9060.05 0.333333
\(905\) 0 0
\(906\) 13792.8 0.505777
\(907\) 46292.7 1.69474 0.847368 0.531007i \(-0.178186\pi\)
0.847368 + 0.531007i \(0.178186\pi\)
\(908\) −7196.92 −0.263038
\(909\) −4373.06 −0.159566
\(910\) 0 0
\(911\) −42085.5 −1.53058 −0.765288 0.643688i \(-0.777403\pi\)
−0.765288 + 0.643688i \(0.777403\pi\)
\(912\) −1870.23 −0.0679051
\(913\) 9573.94 0.347044
\(914\) −23112.7 −0.836435
\(915\) 0 0
\(916\) 19341.4 0.697660
\(917\) 3886.70 0.139967
\(918\) 14762.4 0.530754
\(919\) 21331.8 0.765691 0.382845 0.923812i \(-0.374944\pi\)
0.382845 + 0.923812i \(0.374944\pi\)
\(920\) 0 0
\(921\) −5039.49 −0.180300
\(922\) 18383.2 0.656635
\(923\) −3006.34 −0.107210
\(924\) 4464.63 0.158956
\(925\) 0 0
\(926\) −2712.07 −0.0962463
\(927\) 12319.7 0.436498
\(928\) −7437.12 −0.263077
\(929\) −34331.5 −1.21247 −0.606233 0.795287i \(-0.707320\pi\)
−0.606233 + 0.795287i \(0.707320\pi\)
\(930\) 0 0
\(931\) −2552.31 −0.0898481
\(932\) −3461.20 −0.121647
\(933\) 12948.0 0.454341
\(934\) 29617.9 1.03761
\(935\) 0 0
\(936\) −4605.12 −0.160815
\(937\) −13625.1 −0.475041 −0.237521 0.971383i \(-0.576335\pi\)
−0.237521 + 0.971383i \(0.576335\pi\)
\(938\) −8016.49 −0.279049
\(939\) −14737.1 −0.512168
\(940\) 0 0
\(941\) 7086.48 0.245497 0.122748 0.992438i \(-0.460829\pi\)
0.122748 + 0.992438i \(0.460829\pi\)
\(942\) 29040.6 1.00445
\(943\) −71315.6 −2.46273
\(944\) 9164.75 0.315982
\(945\) 0 0
\(946\) −2844.98 −0.0977784
\(947\) −38735.9 −1.32920 −0.664598 0.747202i \(-0.731397\pi\)
−0.664598 + 0.747202i \(0.731397\pi\)
\(948\) −8190.12 −0.280594
\(949\) 3616.45 0.123704
\(950\) 0 0
\(951\) −13277.6 −0.452740
\(952\) 12983.1 0.442000
\(953\) −30964.3 −1.05250 −0.526249 0.850330i \(-0.676402\pi\)
−0.526249 + 0.850330i \(0.676402\pi\)
\(954\) −3007.73 −0.102074
\(955\) 0 0
\(956\) −19057.1 −0.644717
\(957\) 11873.3 0.401053
\(958\) 19669.3 0.663347
\(959\) −540.962 −0.0182154
\(960\) 0 0
\(961\) −20101.9 −0.674765
\(962\) 31460.1 1.05438
\(963\) 4123.26 0.137975
\(964\) 2461.34 0.0822350
\(965\) 0 0
\(966\) −44080.2 −1.46818
\(967\) −10968.0 −0.364743 −0.182371 0.983230i \(-0.558377\pi\)
−0.182371 + 0.983230i \(0.558377\pi\)
\(968\) −10096.3 −0.335236
\(969\) 8682.65 0.287850
\(970\) 0 0
\(971\) −30081.2 −0.994183 −0.497091 0.867698i \(-0.665599\pi\)
−0.497091 + 0.867698i \(0.665599\pi\)
\(972\) −11519.4 −0.380128
\(973\) −62642.5 −2.06395
\(974\) −7375.64 −0.242640
\(975\) 0 0
\(976\) −10123.1 −0.331999
\(977\) −26628.1 −0.871962 −0.435981 0.899956i \(-0.643599\pi\)
−0.435981 + 0.899956i \(0.643599\pi\)
\(978\) −10604.0 −0.346706
\(979\) 3059.90 0.0998926
\(980\) 0 0
\(981\) 12808.6 0.416867
\(982\) −22394.7 −0.727744
\(983\) −25495.3 −0.827236 −0.413618 0.910450i \(-0.635735\pi\)
−0.413618 + 0.910450i \(0.635735\pi\)
\(984\) −21404.9 −0.693458
\(985\) 0 0
\(986\) 34527.3 1.11519
\(987\) −49205.2 −1.58685
\(988\) 4032.90 0.129862
\(989\) 28089.1 0.903116
\(990\) 0 0
\(991\) −54385.4 −1.74330 −0.871649 0.490130i \(-0.836949\pi\)
−0.871649 + 0.490130i \(0.836949\pi\)
\(992\) 3149.86 0.100815
\(993\) 3185.43 0.101799
\(994\) −2475.57 −0.0789942
\(995\) 0 0
\(996\) −28371.2 −0.902586
\(997\) 36846.5 1.17045 0.585227 0.810870i \(-0.301006\pi\)
0.585227 + 0.810870i \(0.301006\pi\)
\(998\) −24203.3 −0.767677
\(999\) 29456.1 0.932884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.4.a.h.1.2 2
5.2 odd 4 950.4.b.g.799.3 4
5.3 odd 4 950.4.b.g.799.2 4
5.4 even 2 38.4.a.b.1.1 2
15.14 odd 2 342.4.a.k.1.1 2
20.19 odd 2 304.4.a.d.1.2 2
35.34 odd 2 1862.4.a.b.1.2 2
40.19 odd 2 1216.4.a.l.1.1 2
40.29 even 2 1216.4.a.j.1.2 2
95.94 odd 2 722.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.a.b.1.1 2 5.4 even 2
304.4.a.d.1.2 2 20.19 odd 2
342.4.a.k.1.1 2 15.14 odd 2
722.4.a.i.1.2 2 95.94 odd 2
950.4.a.h.1.2 2 1.1 even 1 trivial
950.4.b.g.799.2 4 5.3 odd 4
950.4.b.g.799.3 4 5.2 odd 4
1216.4.a.j.1.2 2 40.29 even 2
1216.4.a.l.1.1 2 40.19 odd 2
1862.4.a.b.1.2 2 35.34 odd 2