L(s) = 1 | − 3-s + 9-s − 4·11-s + 13-s − 4·23-s − 2·25-s − 27-s + 4·33-s − 8·37-s − 39-s − 12·47-s − 6·49-s − 8·59-s + 12·61-s + 4·69-s + 8·71-s − 8·73-s + 2·75-s + 81-s − 8·83-s + 24·97-s − 4·99-s + 12·107-s − 20·109-s + 8·111-s + 117-s − 6·121-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.20·11-s + 0.277·13-s − 0.834·23-s − 2/5·25-s − 0.192·27-s + 0.696·33-s − 1.31·37-s − 0.160·39-s − 1.75·47-s − 6/7·49-s − 1.04·59-s + 1.53·61-s + 0.481·69-s + 0.949·71-s − 0.936·73-s + 0.230·75-s + 1/9·81-s − 0.878·83-s + 2.43·97-s − 0.402·99-s + 1.16·107-s − 1.91·109-s + 0.759·111-s + 0.0924·117-s − 0.545·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.630773043025052549118749254033, −8.817720436856553693417820440774, −8.375842125639014224692584396553, −7.88299170862236547966715942853, −7.45481252000259577781919481229, −6.80627498352812978951834952107, −6.26649543766524853241958299621, −5.80712979259510982592596900238, −5.07293394663360022989847259209, −4.88018735679668155964200289484, −3.93128434702078638217833802407, −3.36264025182393059107582573438, −2.45908743029703714512755553991, −1.59523218968436278511442735336, 0,
1.59523218968436278511442735336, 2.45908743029703714512755553991, 3.36264025182393059107582573438, 3.93128434702078638217833802407, 4.88018735679668155964200289484, 5.07293394663360022989847259209, 5.80712979259510982592596900238, 6.26649543766524853241958299621, 6.80627498352812978951834952107, 7.45481252000259577781919481229, 7.88299170862236547966715942853, 8.375842125639014224692584396553, 8.817720436856553693417820440774, 9.630773043025052549118749254033