L(s) = 1 | + 9·11-s − 3·17-s + 8·19-s − 7·25-s − 3·41-s − 43-s + 8·49-s − 9·59-s + 2·67-s − 8·73-s + 3·83-s + 15·89-s + 4·97-s + 15·107-s + 12·113-s + 41·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + ⋯ |
L(s) = 1 | + 2.71·11-s − 0.727·17-s + 1.83·19-s − 7/5·25-s − 0.468·41-s − 0.152·43-s + 8/7·49-s − 1.17·59-s + 0.244·67-s − 0.936·73-s + 0.329·83-s + 1.58·89-s + 0.406·97-s + 1.45·107-s + 1.12·113-s + 3.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.489333142\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.489333142\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.408662091648752926941330344616, −7.69121581818258365467822488206, −7.38037533052810416322064368118, −6.97413843062814721922727444024, −6.45397411679532678997968669401, −6.08995721924778924494450951665, −5.71318504436575063198891984101, −5.01540613056604093500846401409, −4.47193239676393967039811169316, −4.01730855827830996627665748837, −3.53774078437030155205676381498, −3.13751370071269219027009949474, −2.10569961098130503324307738358, −1.56891115950101455483309426045, −0.837371603364737429119284908994,
0.837371603364737429119284908994, 1.56891115950101455483309426045, 2.10569961098130503324307738358, 3.13751370071269219027009949474, 3.53774078437030155205676381498, 4.01730855827830996627665748837, 4.47193239676393967039811169316, 5.01540613056604093500846401409, 5.71318504436575063198891984101, 6.08995721924778924494450951665, 6.45397411679532678997968669401, 6.97413843062814721922727444024, 7.38037533052810416322064368118, 7.69121581818258365467822488206, 8.408662091648752926941330344616