| L(s) = 1 | + 2·4-s + 5·7-s + 2·13-s − 2·19-s + 5·25-s + 10·28-s + 7·31-s − 11·37-s − 8·43-s + 18·49-s + 4·52-s − 2·61-s − 8·64-s + 22·67-s + 10·73-s − 4·76-s + 13·79-s + 10·91-s + 19·97-s + 10·100-s − 20·103-s − 2·109-s − 22·121-s + 14·124-s + 127-s + 131-s − 10·133-s + ⋯ |
| L(s) = 1 | + 4-s + 1.88·7-s + 0.554·13-s − 0.458·19-s + 25-s + 1.88·28-s + 1.25·31-s − 1.80·37-s − 1.21·43-s + 18/7·49-s + 0.554·52-s − 0.256·61-s − 64-s + 2.68·67-s + 1.17·73-s − 0.458·76-s + 1.46·79-s + 1.04·91-s + 1.92·97-s + 100-s − 1.97·103-s − 0.191·109-s − 2·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s − 0.867·133-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.541184073\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.541184073\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57352848170612887407462873005, −10.47923073334173838096031379118, −9.440413035806214046869547050737, −9.254024404619447129296099950057, −8.409128992400716059858389126806, −8.364181280092702393203494773052, −8.074365763602242258969267276181, −7.42714809638278448126725348425, −6.92730203966564497103370632849, −6.64179616542362120451134178865, −6.24326164681637105960395122523, −5.49077249720267834938449949783, −4.98020458966316439738664840480, −4.87540221413339697965386429516, −4.06380511826387917448556425493, −3.57826824341302565856737080272, −2.78439797316068923609797133448, −2.17780326022769010648367878704, −1.72887169757632256400104817440, −1.00098490011391883988961392684,
1.00098490011391883988961392684, 1.72887169757632256400104817440, 2.17780326022769010648367878704, 2.78439797316068923609797133448, 3.57826824341302565856737080272, 4.06380511826387917448556425493, 4.87540221413339697965386429516, 4.98020458966316439738664840480, 5.49077249720267834938449949783, 6.24326164681637105960395122523, 6.64179616542362120451134178865, 6.92730203966564497103370632849, 7.42714809638278448126725348425, 8.074365763602242258969267276181, 8.364181280092702393203494773052, 8.409128992400716059858389126806, 9.254024404619447129296099950057, 9.440413035806214046869547050737, 10.47923073334173838096031379118, 10.57352848170612887407462873005