Properties

Label 4-80e2-1.1-c7e2-0-2
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $624.540$
Root an. cond. $4.99908$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20·3-s + 250·5-s − 1.66e3·7-s + 442·9-s − 3.60e3·11-s + 1.31e4·13-s + 5.00e3·15-s + 5.46e3·17-s + 4.04e4·19-s − 3.32e4·21-s + 4.18e4·23-s + 4.68e4·25-s + 5.34e4·27-s + 1.18e5·29-s + 1.15e5·31-s − 7.20e4·33-s − 4.15e5·35-s + 3.06e5·37-s + 2.63e5·39-s − 3.53e5·41-s − 1.21e6·43-s + 1.10e5·45-s + 2.06e6·47-s + 7.85e5·49-s + 1.09e5·51-s + 1.40e6·53-s − 9.00e5·55-s + ⋯
L(s)  = 1  + 0.427·3-s + 0.894·5-s − 1.82·7-s + 0.202·9-s − 0.815·11-s + 1.66·13-s + 0.382·15-s + 0.269·17-s + 1.35·19-s − 0.782·21-s + 0.716·23-s + 3/5·25-s + 0.522·27-s + 0.903·29-s + 0.698·31-s − 0.348·33-s − 1.63·35-s + 0.996·37-s + 0.711·39-s − 0.800·41-s − 2.33·43-s + 0.180·45-s + 2.90·47-s + 0.953·49-s + 0.115·51-s + 1.29·53-s − 0.729·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(624.540\)
Root analytic conductor: \(4.99908\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6400,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.498190459\)
\(L(\frac12)\) \(\approx\) \(3.498190459\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p^{3} T )^{2} \)
good3$D_{4}$ \( 1 - 20 T - 14 p T^{2} - 20 p^{7} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 + 1660 T + 1970190 T^{2} + 1660 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 + 3600 T + 5634742 T^{2} + 3600 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 13180 T + 163072398 T^{2} - 13180 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 - 5460 T - 160982138 T^{2} - 5460 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 - 40472 T + 2050920774 T^{2} - 40472 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 - 41820 T + 7228954990 T^{2} - 41820 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 - 4092 p T + 37435002574 T^{2} - 4092 p^{8} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 - 115928 T + 13575043518 T^{2} - 115928 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 - 306940 T + 120498758430 T^{2} - 306940 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 353148 T + 314020811638 T^{2} + 353148 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 1215340 T + 866800610214 T^{2} + 1215340 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 - 2068500 T + 2082813588382 T^{2} - 2068500 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 - 1400460 T + 2025459025630 T^{2} - 1400460 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 - 1992504 T + 5477605919542 T^{2} - 1992504 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 1678676 T + 900787415886 T^{2} + 1678676 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 3663940 T + 12525094986870 T^{2} + 3663940 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 1794936 T + 17428289847406 T^{2} + 1794936 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 - 5062180 T + 19516555685238 T^{2} - 5062180 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 10178224 T + 57668559431262 T^{2} + 10178224 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 - 7214100 T + 67277011758070 T^{2} - 7214100 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 15330828 T + 138366637288054 T^{2} + 15330828 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 - 14024020 T + 210744479822310 T^{2} - 14024020 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27253681411043350365833099794, −13.00463275148248776283389069335, −12.23406625088310727288236885091, −11.70940655381887916635946717853, −10.81893892811333185126520040889, −10.25173004700758752712961097381, −9.941251905819841219543396041361, −9.414519060959878371516239589161, −8.690250815172912725659968299462, −8.378123818858546491364324736349, −7.26381462238656931876866040475, −6.83562664867804186651113832998, −6.04949812225145502990323633587, −5.74007124027704651413264820573, −4.80769715225556180091069654398, −3.69626138462585054835574241027, −3.05364650917635471686614839267, −2.66699085073468423814450120089, −1.34359537403694219737659970990, −0.66286536679789238902129535725, 0.66286536679789238902129535725, 1.34359537403694219737659970990, 2.66699085073468423814450120089, 3.05364650917635471686614839267, 3.69626138462585054835574241027, 4.80769715225556180091069654398, 5.74007124027704651413264820573, 6.04949812225145502990323633587, 6.83562664867804186651113832998, 7.26381462238656931876866040475, 8.378123818858546491364324736349, 8.690250815172912725659968299462, 9.414519060959878371516239589161, 9.941251905819841219543396041361, 10.25173004700758752712961097381, 10.81893892811333185126520040889, 11.70940655381887916635946717853, 12.23406625088310727288236885091, 13.00463275148248776283389069335, 13.27253681411043350365833099794

Graph of the $Z$-function along the critical line