Properties

Label 4-80e2-1.1-c4e2-0-3
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $68.3862$
Root an. cond. $2.87569$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 50·5-s + 158·9-s + 1.87e3·25-s − 2.39e3·29-s − 964·41-s − 7.90e3·45-s − 1.92e3·49-s + 8.15e3·61-s + 1.84e4·81-s + 8.64e3·89-s − 1.10e4·101-s + 4.46e4·109-s + 2.92e4·121-s − 6.25e4·125-s + 127-s + 131-s + 137-s + 139-s + 1.19e5·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.71e4·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 2·5-s + 1.95·9-s + 3·25-s − 2.84·29-s − 0.573·41-s − 3.90·45-s − 0.800·49-s + 2.19·61-s + 2.80·81-s + 1.09·89-s − 1.08·101-s + 3.75·109-s + 2·121-s − 4·125-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 5.69·145-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s + 2·169-s + 3.34e−5·173-s + 3.12e−5·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(68.3862\)
Root analytic conductor: \(2.87569\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6400,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.327950467\)
\(L(\frac12)\) \(\approx\) \(1.327950467\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{2} \)
good3$C_2^2$ \( 1 - 158 T^{2} + p^{8} T^{4} \)
7$C_2^2$ \( 1 + 1922 T^{2} + p^{8} T^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
23$C_2^2$ \( 1 + 211202 T^{2} + p^{8} T^{4} \)
29$C_2$ \( ( 1 + 1198 T + p^{4} T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
41$C_2$ \( ( 1 + 482 T + p^{4} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 2519518 T^{2} + p^{8} T^{4} \)
47$C_2^2$ \( 1 + 9618242 T^{2} + p^{8} T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
61$C_2$ \( ( 1 - 4078 T + p^{4} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 20249758 T^{2} + p^{8} T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
83$C_2^2$ \( 1 - 30884638 T^{2} + p^{8} T^{4} \)
89$C_2$ \( ( 1 - 4322 T + p^{4} T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90319015114450438974878431278, −13.03764634982291988727510504523, −12.80998375142703587648468084982, −12.45484572807308830484850236754, −11.52760739255604168386460459224, −11.42982341193472034988538482564, −10.70725655009193865283633367657, −10.08193690129939261647473974363, −9.472106764632052052471782868410, −8.757986258998767481688099955150, −8.052221660603498424879002092169, −7.38946375002547291939714172848, −7.27155414958287336273214312607, −6.51004309971067595480141956007, −5.26284193809888240197257228261, −4.52776064918683640183755519102, −3.88854060184822673985402133660, −3.44936722688872881767358353743, −1.82812879793037961166209991285, −0.60369903617915881898722533219, 0.60369903617915881898722533219, 1.82812879793037961166209991285, 3.44936722688872881767358353743, 3.88854060184822673985402133660, 4.52776064918683640183755519102, 5.26284193809888240197257228261, 6.51004309971067595480141956007, 7.27155414958287336273214312607, 7.38946375002547291939714172848, 8.052221660603498424879002092169, 8.757986258998767481688099955150, 9.472106764632052052471782868410, 10.08193690129939261647473974363, 10.70725655009193865283633367657, 11.42982341193472034988538482564, 11.52760739255604168386460459224, 12.45484572807308830484850236754, 12.80998375142703587648468084982, 13.03764634982291988727510504523, 13.90319015114450438974878431278

Graph of the $Z$-function along the critical line