L(s) = 1 | + 2·2-s + 2·4-s − 6·11-s − 4·16-s − 6·17-s − 12·22-s + 7·25-s + 6·31-s − 8·32-s − 12·34-s + 12·37-s + 10·41-s − 12·44-s − 6·49-s + 14·50-s + 12·62-s − 8·64-s + 4·67-s − 12·68-s + 24·74-s + 20·82-s − 4·83-s + 6·97-s − 12·98-s + 14·100-s + 2·101-s + 24·103-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 1.80·11-s − 16-s − 1.45·17-s − 2.55·22-s + 7/5·25-s + 1.07·31-s − 1.41·32-s − 2.05·34-s + 1.97·37-s + 1.56·41-s − 1.80·44-s − 6/7·49-s + 1.97·50-s + 1.52·62-s − 64-s + 0.488·67-s − 1.45·68-s + 2.78·74-s + 2.20·82-s − 0.439·83-s + 0.609·97-s − 1.21·98-s + 7/5·100-s + 0.199·101-s + 2.36·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.988390198\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.988390198\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.343449140885439645656577311193, −7.78970742414657926142503879069, −7.48132257992839336209348896948, −6.81597070518766970726978811770, −6.47161013671627445225146258908, −5.96790200966431922475620247674, −5.61693619485487660572887039303, −4.93584099329112098291633920021, −4.59131911040672231342081257782, −4.43983007355245845338930934626, −3.58975400660762895406640078327, −2.89182530872395182156480184715, −2.62425638466576633897352305402, −2.10396995081044244318216788271, −0.66556160700882718734927216886,
0.66556160700882718734927216886, 2.10396995081044244318216788271, 2.62425638466576633897352305402, 2.89182530872395182156480184715, 3.58975400660762895406640078327, 4.43983007355245845338930934626, 4.59131911040672231342081257782, 4.93584099329112098291633920021, 5.61693619485487660572887039303, 5.96790200966431922475620247674, 6.47161013671627445225146258908, 6.81597070518766970726978811770, 7.48132257992839336209348896948, 7.78970742414657926142503879069, 8.343449140885439645656577311193