L(s) = 1 | + 2·2-s − 3-s + 2·4-s − 2·6-s + 9-s − 5·11-s − 2·12-s − 4·16-s + 4·17-s + 2·18-s − 7·19-s − 10·22-s + 4·25-s − 27-s − 8·32-s + 5·33-s + 8·34-s + 2·36-s − 14·38-s + 4·41-s + 11·43-s − 10·44-s + 4·48-s − 8·49-s + 8·50-s − 4·51-s − 2·54-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 1/3·9-s − 1.50·11-s − 0.577·12-s − 16-s + 0.970·17-s + 0.471·18-s − 1.60·19-s − 2.13·22-s + 4/5·25-s − 0.192·27-s − 1.41·32-s + 0.870·33-s + 1.37·34-s + 1/3·36-s − 2.27·38-s + 0.624·41-s + 1.67·43-s − 1.50·44-s + 0.577·48-s − 8/7·49-s + 1.13·50-s − 0.560·51-s − 0.272·54-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.373471874\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.373471874\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.213681228634129150628772367080, −7.78404811806858777341251508851, −7.45514517564893129369499025428, −6.83459959766881535923178655356, −6.28732434370147294161226601665, −6.06124091684267591094526776338, −5.55744382668610693833944584042, −5.04201910014136492908927863462, −4.75297245108940322975403997533, −4.28210186770296526522785637160, −3.63053394637834921523895927674, −3.10778028111734363044953665165, −2.49547805093570700068161992494, −1.96385902969954101224519807532, −0.61666213589490070667326346162,
0.61666213589490070667326346162, 1.96385902969954101224519807532, 2.49547805093570700068161992494, 3.10778028111734363044953665165, 3.63053394637834921523895927674, 4.28210186770296526522785637160, 4.75297245108940322975403997533, 5.04201910014136492908927863462, 5.55744382668610693833944584042, 6.06124091684267591094526776338, 6.28732434370147294161226601665, 6.83459959766881535923178655356, 7.45514517564893129369499025428, 7.78404811806858777341251508851, 8.213681228634129150628772367080