L(s) = 1 | + 2·2-s − 3-s + 2·4-s − 2·6-s + 7-s + 9-s − 3·11-s − 2·12-s + 2·14-s − 4·16-s + 2·18-s − 21-s − 6·22-s + 5·25-s − 27-s + 2·28-s − 4·29-s − 8·32-s + 3·33-s + 2·36-s − 2·42-s − 6·44-s + 4·48-s − 13·49-s + 10·50-s − 2·54-s − 8·58-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.577·12-s + 0.534·14-s − 16-s + 0.471·18-s − 0.218·21-s − 1.27·22-s + 25-s − 0.192·27-s + 0.377·28-s − 0.742·29-s − 1.41·32-s + 0.522·33-s + 1/3·36-s − 0.308·42-s − 0.904·44-s + 0.577·48-s − 1.85·49-s + 1.41·50-s − 0.272·54-s − 1.05·58-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.082957146789492199335682439220, −7.55920326486073493580906458292, −7.07531406217681502369527855490, −6.67890882552647988105058048212, −6.22203214184557267430064738327, −5.58882272334205780678518308851, −5.43117895880557595096381860923, −4.85734304260639368778843915325, −4.55627878912994652701906282896, −3.96735278735811225785552498034, −3.37284126874933718948546043363, −2.82161173070628012203055023474, −2.23191669177233857694475067834, −1.36417429693726692119808261310, 0,
1.36417429693726692119808261310, 2.23191669177233857694475067834, 2.82161173070628012203055023474, 3.37284126874933718948546043363, 3.96735278735811225785552498034, 4.55627878912994652701906282896, 4.85734304260639368778843915325, 5.43117895880557595096381860923, 5.58882272334205780678518308851, 6.22203214184557267430064738327, 6.67890882552647988105058048212, 7.07531406217681502369527855490, 7.55920326486073493580906458292, 8.082957146789492199335682439220