L(s) = 1 | + 2·5-s + 4·7-s − 2·11-s + 8·19-s + 3·25-s − 4·29-s + 4·31-s + 8·35-s + 4·37-s − 4·41-s + 4·43-s + 8·47-s − 4·53-s − 4·55-s + 12·59-s + 12·61-s + 4·71-s − 8·77-s + 16·79-s + 12·83-s − 4·89-s + 16·95-s + 12·97-s − 20·101-s + 12·107-s − 4·109-s − 4·113-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 1.51·7-s − 0.603·11-s + 1.83·19-s + 3/5·25-s − 0.742·29-s + 0.718·31-s + 1.35·35-s + 0.657·37-s − 0.624·41-s + 0.609·43-s + 1.16·47-s − 0.549·53-s − 0.539·55-s + 1.56·59-s + 1.53·61-s + 0.474·71-s − 0.911·77-s + 1.80·79-s + 1.31·83-s − 0.423·89-s + 1.64·95-s + 1.21·97-s − 1.99·101-s + 1.16·107-s − 0.383·109-s − 0.376·113-s + ⋯ |
Λ(s)=(=(62726400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(62726400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
62726400
= 28⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
3999.48 |
Root analytic conductor: |
7.95245 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 62726400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.392199739 |
L(21) |
≈ |
6.392199739 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 11 | C1 | (1+T)2 |
good | 7 | D4 | 1−4T+16T2−4pT3+p2T4 |
| 13 | C22 | 1+24T2+p2T4 |
| 17 | C22 | 1+16T2+p2T4 |
| 19 | D4 | 1−8T+46T2−8pT3+p2T4 |
| 23 | C22 | 1+38T2+p2T4 |
| 29 | D4 | 1+4T+30T2+4pT3+p2T4 |
| 31 | D4 | 1−4T+58T2−4pT3+p2T4 |
| 37 | D4 | 1−4T+46T2−4pT3+p2T4 |
| 41 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 43 | D4 | 1−4T+40T2−4pT3+p2T4 |
| 47 | D4 | 1−8T+38T2−8pT3+p2T4 |
| 53 | D4 | 1+4T+38T2+4pT3+p2T4 |
| 59 | D4 | 1−12T+146T2−12pT3+p2T4 |
| 61 | D4 | 1−12T+150T2−12pT3+p2T4 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | D4 | 1−4T+74T2−4pT3+p2T4 |
| 73 | C22 | 1+96T2+p2T4 |
| 79 | D4 | 1−16T+150T2−16pT3+p2T4 |
| 83 | D4 | 1−12T+184T2−12pT3+p2T4 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | D4 | 1−12T+222T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.86742359342845289971225402962, −7.84788073694050585644894833015, −7.35168742222963915324465063029, −7.08494715646822316997389985779, −6.50654914424554425856181397563, −6.43249903475446675747119669406, −5.70387726442982119002732516346, −5.52082698066106743555588560117, −5.18362500483067615029293687711, −5.12527526823527625714200989903, −4.45775520727538247925520386588, −4.32246301787294433728658447599, −3.53046985465691196970212048177, −3.45290856677079954675668782919, −2.62095387748962369119489522305, −2.56220393342996253562323725020, −1.86125905996384875704005040948, −1.70853975197037744690635787908, −0.909602297106672650127731883100, −0.73290838982016040638422844127,
0.73290838982016040638422844127, 0.909602297106672650127731883100, 1.70853975197037744690635787908, 1.86125905996384875704005040948, 2.56220393342996253562323725020, 2.62095387748962369119489522305, 3.45290856677079954675668782919, 3.53046985465691196970212048177, 4.32246301787294433728658447599, 4.45775520727538247925520386588, 5.12527526823527625714200989903, 5.18362500483067615029293687711, 5.52082698066106743555588560117, 5.70387726442982119002732516346, 6.43249903475446675747119669406, 6.50654914424554425856181397563, 7.08494715646822316997389985779, 7.35168742222963915324465063029, 7.84788073694050585644894833015, 7.86742359342845289971225402962