L(s) = 1 | + 2-s − 4-s − 3·8-s − 16-s + 25-s + 4·29-s + 5·32-s − 6·37-s − 7·49-s + 50-s − 16·53-s + 4·58-s + 7·64-s − 6·74-s − 7·98-s − 100-s − 16·106-s − 18·109-s + 32·113-s − 4·116-s + 3·121-s + 127-s − 3·128-s + 131-s + 137-s + 139-s + 6·148-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1/4·16-s + 1/5·25-s + 0.742·29-s + 0.883·32-s − 0.986·37-s − 49-s + 0.141·50-s − 2.19·53-s + 0.525·58-s + 7/8·64-s − 0.697·74-s − 0.707·98-s − 0.0999·100-s − 1.55·106-s − 1.72·109-s + 3.01·113-s − 0.371·116-s + 3/11·121-s + 0.0887·127-s − 0.265·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.493·148-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.279493202876599174540976743759, −7.80871439650669563623703314290, −7.28988512181529862656460178022, −6.66737192106165416393420731241, −6.33584110929613012711273555844, −5.89641260043268682832070404287, −5.27362695173636192465981288537, −4.88278867616077249543717168838, −4.52724739684782657322229284403, −3.89840574712728579273575554830, −3.31842795816732221448883047733, −2.96303881813488564738966701271, −2.12790397741908633100235640460, −1.21988870350823421143905956764, 0,
1.21988870350823421143905956764, 2.12790397741908633100235640460, 2.96303881813488564738966701271, 3.31842795816732221448883047733, 3.89840574712728579273575554830, 4.52724739684782657322229284403, 4.88278867616077249543717168838, 5.27362695173636192465981288537, 5.89641260043268682832070404287, 6.33584110929613012711273555844, 6.66737192106165416393420731241, 7.28988512181529862656460178022, 7.80871439650669563623703314290, 8.279493202876599174540976743759