L(s) = 1 | + 2·3-s − 2·5-s + 20·7-s − 3·9-s + 22·11-s − 80·13-s − 4·15-s − 124·17-s − 72·19-s + 40·21-s − 98·23-s − 55·25-s + 34·27-s − 144·29-s − 34·31-s + 44·33-s − 40·35-s − 54·37-s − 160·39-s + 536·41-s + 60·43-s + 6·45-s − 272·47-s − 338·49-s − 248·51-s + 492·53-s − 44·55-s + ⋯ |
L(s) = 1 | + 0.384·3-s − 0.178·5-s + 1.07·7-s − 1/9·9-s + 0.603·11-s − 1.70·13-s − 0.0688·15-s − 1.76·17-s − 0.869·19-s + 0.415·21-s − 0.888·23-s − 0.439·25-s + 0.242·27-s − 0.922·29-s − 0.196·31-s + 0.232·33-s − 0.193·35-s − 0.239·37-s − 0.656·39-s + 2.04·41-s + 0.212·43-s + 0.0198·45-s − 0.844·47-s − 0.985·49-s − 0.680·51-s + 1.27·53-s − 0.107·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 11 | $C_1$ | \( ( 1 - p T )^{2} \) |
good | 3 | $D_{4}$ | \( 1 - 2 T + 7 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \) |
| 5 | $D_{4}$ | \( 1 + 2 T + 59 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \) |
| 7 | $D_{4}$ | \( 1 - 20 T + 738 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \) |
| 13 | $D_{4}$ | \( 1 + 80 T + 4794 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 124 T + 13238 T^{2} + 124 p^{3} T^{3} + p^{6} T^{4} \) |
| 19 | $D_{4}$ | \( 1 + 72 T + 4214 T^{2} + 72 p^{3} T^{3} + p^{6} T^{4} \) |
| 23 | $D_{4}$ | \( 1 + 98 T + 22847 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 144 T + 44554 T^{2} + 144 p^{3} T^{3} + p^{6} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 34 T + 57519 T^{2} + 34 p^{3} T^{3} + p^{6} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 54 T + 101843 T^{2} + 54 p^{3} T^{3} + p^{6} T^{4} \) |
| 41 | $D_{4}$ | \( 1 - 536 T + 209618 T^{2} - 536 p^{3} T^{3} + p^{6} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 60 T + 159146 T^{2} - 60 p^{3} T^{3} + p^{6} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 272 T + 182942 T^{2} + 272 p^{3} T^{3} + p^{6} T^{4} \) |
| 53 | $D_{4}$ | \( 1 - 492 T + 348862 T^{2} - 492 p^{3} T^{3} + p^{6} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 634 T + 458975 T^{2} + 634 p^{3} T^{3} + p^{6} T^{4} \) |
| 61 | $D_{4}$ | \( 1 + 840 T + 528794 T^{2} + 840 p^{3} T^{3} + p^{6} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 754 T + 742455 T^{2} + 754 p^{3} T^{3} + p^{6} T^{4} \) |
| 71 | $D_{4}$ | \( 1 + 678 T + 813415 T^{2} + 678 p^{3} T^{3} + p^{6} T^{4} \) |
| 73 | $D_{4}$ | \( 1 + 400 T + 160962 T^{2} + 400 p^{3} T^{3} + p^{6} T^{4} \) |
| 79 | $D_{4}$ | \( 1 - 4 p T - 279966 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \) |
| 83 | $D_{4}$ | \( 1 + 468 T + 1155130 T^{2} + 468 p^{3} T^{3} + p^{6} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 1842 T + 1935427 T^{2} + 1842 p^{3} T^{3} + p^{6} T^{4} \) |
| 97 | $D_{4}$ | \( 1 - 2194 T + 2966547 T^{2} - 2194 p^{3} T^{3} + p^{6} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.659890211653806100668861196911, −9.337001964357384850338755548042, −9.021088455503012753060679925998, −8.549173266722828068742926250328, −8.068786073483896527883817655673, −7.67320478042031699270768780324, −7.33516177957734884300535111967, −6.82673914574715326162010760868, −6.28038038251687987262360181879, −5.82693718417527506000725229542, −5.22613680538853857620486748250, −4.45217106719644271208490575739, −4.45122371502964288719910280408, −4.00134385091175629378275306062, −2.94621839644524322570989992619, −2.55201582993080766996807852719, −1.86280330592618412142484737768, −1.52242411151265508876516760398, 0, 0,
1.52242411151265508876516760398, 1.86280330592618412142484737768, 2.55201582993080766996807852719, 2.94621839644524322570989992619, 4.00134385091175629378275306062, 4.45122371502964288719910280408, 4.45217106719644271208490575739, 5.22613680538853857620486748250, 5.82693718417527506000725229542, 6.28038038251687987262360181879, 6.82673914574715326162010760868, 7.33516177957734884300535111967, 7.67320478042031699270768780324, 8.068786073483896527883817655673, 8.549173266722828068742926250328, 9.021088455503012753060679925998, 9.337001964357384850338755548042, 9.659890211653806100668861196911