Properties

Label 4-672e2-1.1-c0e2-0-1
Degree $4$
Conductor $451584$
Sign $1$
Analytic cond. $0.112474$
Root an. cond. $0.579112$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 7-s − 11-s + 15-s + 21-s + 25-s − 27-s − 2·29-s − 31-s − 33-s + 35-s + 53-s − 55-s − 59-s − 2·73-s + 75-s − 77-s − 79-s − 81-s + 2·83-s − 2·87-s − 93-s − 2·97-s − 2·101-s + 2·103-s + 105-s + ⋯
L(s)  = 1  + 3-s + 5-s + 7-s − 11-s + 15-s + 21-s + 25-s − 27-s − 2·29-s − 31-s − 33-s + 35-s + 53-s − 55-s − 59-s − 2·73-s + 75-s − 77-s − 79-s − 81-s + 2·83-s − 2·87-s − 93-s − 2·97-s − 2·101-s + 2·103-s + 105-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(451584\)    =    \(2^{10} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.112474\)
Root analytic conductor: \(0.579112\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 451584,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.372669758\)
\(L(\frac12)\) \(\approx\) \(1.372669758\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
7$C_2$ \( 1 - T + T^{2} \)
good5$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 + T + T^{2} )^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81062538326327691669575886295, −10.56960542980599139432910063008, −9.887364876054883765997833013985, −9.691033409159790931732633059033, −9.063708239301009610618427229504, −8.825158967966344825043179155360, −8.469444121854547520638316484297, −7.75622842397281138326330756989, −7.65080337952761155978342878634, −7.19760192463088888829712604857, −6.49294543615988995286632276312, −5.85593767120683256892465347312, −5.37966868091882362727087198527, −5.28550417542179721972182787911, −4.43936632309463661566148667803, −3.92006594587286479499080429671, −3.15307568079583808449612955107, −2.71114177024210431121502880609, −1.96179931205958697876066291763, −1.67152980012138698261184570844, 1.67152980012138698261184570844, 1.96179931205958697876066291763, 2.71114177024210431121502880609, 3.15307568079583808449612955107, 3.92006594587286479499080429671, 4.43936632309463661566148667803, 5.28550417542179721972182787911, 5.37966868091882362727087198527, 5.85593767120683256892465347312, 6.49294543615988995286632276312, 7.19760192463088888829712604857, 7.65080337952761155978342878634, 7.75622842397281138326330756989, 8.469444121854547520638316484297, 8.825158967966344825043179155360, 9.063708239301009610618427229504, 9.691033409159790931732633059033, 9.887364876054883765997833013985, 10.56960542980599139432910063008, 10.81062538326327691669575886295

Graph of the $Z$-function along the critical line