L(s) = 1 | + 2·2-s + 3-s + 2·4-s + 2·6-s + 2·7-s + 9-s + 2·12-s + 4·14-s − 4·16-s + 2·18-s + 4·19-s + 2·21-s + 3·25-s + 27-s + 4·28-s − 2·29-s − 8·32-s + 2·36-s + 8·38-s + 4·41-s + 4·42-s − 4·48-s − 11·49-s + 6·50-s + 16·53-s + 2·54-s + 4·57-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 0.755·7-s + 1/3·9-s + 0.577·12-s + 1.06·14-s − 16-s + 0.471·18-s + 0.917·19-s + 0.436·21-s + 3/5·25-s + 0.192·27-s + 0.755·28-s − 0.371·29-s − 1.41·32-s + 1/3·36-s + 1.29·38-s + 0.624·41-s + 0.617·42-s − 0.577·48-s − 1.57·49-s + 0.848·50-s + 2.19·53-s + 0.272·54-s + 0.529·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.824134090\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.824134090\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.299466427781751772702058069200, −7.902426289993434067499557498473, −7.43580314438238289009468748587, −6.92260293458617276722934127091, −6.57415097738785205536396464637, −5.97649668236063640497314631594, −5.41179770483773404560678581344, −5.08450568548600867841604912196, −4.70508723749341815073226066792, −4.04044875364450495814050379668, −3.66007720102416136107079042171, −3.14837060353887846404013102044, −2.47184089781820374192931322175, −2.00160790434408989931509710178, −0.988971569178842219271303108319,
0.988971569178842219271303108319, 2.00160790434408989931509710178, 2.47184089781820374192931322175, 3.14837060353887846404013102044, 3.66007720102416136107079042171, 4.04044875364450495814050379668, 4.70508723749341815073226066792, 5.08450568548600867841604912196, 5.41179770483773404560678581344, 5.97649668236063640497314631594, 6.57415097738785205536396464637, 6.92260293458617276722934127091, 7.43580314438238289009468748587, 7.902426289993434067499557498473, 8.299466427781751772702058069200