Properties

Label 4-60e4-1.1-c2e2-0-1
Degree $4$
Conductor $12960000$
Sign $1$
Analytic cond. $9622.21$
Root an. cond. $9.90418$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·7-s − 2·13-s − 50·19-s + 78·31-s − 64·37-s − 46·43-s + 145·49-s + 146·61-s + 126·67-s − 272·73-s + 48·79-s + 36·91-s + 14·97-s + 220·103-s − 50·109-s − 96·121-s + 127-s + 131-s + 900·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 335·169-s + ⋯
L(s)  = 1  − 2.57·7-s − 0.153·13-s − 2.63·19-s + 2.51·31-s − 1.72·37-s − 1.06·43-s + 2.95·49-s + 2.39·61-s + 1.88·67-s − 3.72·73-s + 0.607·79-s + 0.395·91-s + 0.144·97-s + 2.13·103-s − 0.458·109-s − 0.793·121-s + 0.00787·127-s + 0.00763·131-s + 6.76·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.98·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(9622.21\)
Root analytic conductor: \(9.90418\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12960000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.03911640907\)
\(L(\frac12)\) \(\approx\) \(0.03911640907\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 + 9 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 96 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 144 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + 25 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1040 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 960 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 39 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 32 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3330 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 23 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 3360 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 3630 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6864 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 73 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 63 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 6210 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 136 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 11600 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 - 146 T + p^{2} T^{2} )( 1 + 146 T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.776138061745164346003530987262, −8.252796158568762970501735270187, −7.997636132580568519118650313442, −7.17135805382902305190067607425, −6.98561126807676597054637360868, −6.65997258995402939772140314164, −6.38316475790437159515744164872, −6.09129067577034291958928698301, −5.83379030060162939759408543609, −5.01557329520137064972930054782, −4.86550632116231161790535574079, −4.19810831041191388595881267396, −3.86797625280582361817074448983, −3.49382943819530255912410999753, −3.08086048173263521894365911046, −2.44890198383562394385072468004, −2.41276336916997655515474657751, −1.57228583041082317301656131480, −0.77087749458354807650065673550, −0.05523172074852043384134555270, 0.05523172074852043384134555270, 0.77087749458354807650065673550, 1.57228583041082317301656131480, 2.41276336916997655515474657751, 2.44890198383562394385072468004, 3.08086048173263521894365911046, 3.49382943819530255912410999753, 3.86797625280582361817074448983, 4.19810831041191388595881267396, 4.86550632116231161790535574079, 5.01557329520137064972930054782, 5.83379030060162939759408543609, 6.09129067577034291958928698301, 6.38316475790437159515744164872, 6.65997258995402939772140314164, 6.98561126807676597054637360868, 7.17135805382902305190067607425, 7.997636132580568519118650313442, 8.252796158568762970501735270187, 8.776138061745164346003530987262

Graph of the $Z$-function along the critical line