L(s) = 1 | − 3-s − 2·4-s + 5-s + 9-s + 2·12-s + 2·13-s − 15-s + 4·16-s − 2·20-s + 25-s − 27-s − 8·31-s − 2·36-s − 10·37-s − 2·39-s − 18·41-s − 4·43-s + 45-s − 4·48-s + 2·49-s − 4·52-s + 12·53-s + 2·60-s − 8·64-s + 2·65-s + 8·67-s − 75-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 4-s + 0.447·5-s + 1/3·9-s + 0.577·12-s + 0.554·13-s − 0.258·15-s + 16-s − 0.447·20-s + 1/5·25-s − 0.192·27-s − 1.43·31-s − 1/3·36-s − 1.64·37-s − 0.320·39-s − 2.81·41-s − 0.609·43-s + 0.149·45-s − 0.577·48-s + 2/7·49-s − 0.554·52-s + 1.64·53-s + 0.258·60-s − 64-s + 0.248·65-s + 0.977·67-s − 0.115·75-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT2 |
| 3 | C1 | 1+T |
| 5 | C1 | 1−T |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1−14T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 41 | C2×C2 | (1+6T+pT2)(1+12T+pT2) |
| 43 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 47 | C22 | 1−26T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−98T2+p2T4 |
| 61 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−74T2+p2T4 |
| 79 | C2×C2 | (1−8T+pT2)(1+16T+pT2) |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 97 | C22 | 1−170T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.724106438367421303345162639094, −8.542414096846067177198244976201, −7.982913945729478238750702527615, −7.23853334997921135605777421359, −6.88247170613678561810180280311, −6.37477083063926939926298893868, −5.67797429529676722720135763007, −5.24149311167588692091359783047, −5.09255145585540175993384578396, −4.21040799738456801763099304038, −3.68350046726164799970870121574, −3.22951288219260696620707097305, −2.04071424181164247240988898380, −1.31631268356932863582550653017, 0,
1.31631268356932863582550653017, 2.04071424181164247240988898380, 3.22951288219260696620707097305, 3.68350046726164799970870121574, 4.21040799738456801763099304038, 5.09255145585540175993384578396, 5.24149311167588692091359783047, 5.67797429529676722720135763007, 6.37477083063926939926298893868, 6.88247170613678561810180280311, 7.23853334997921135605777421359, 7.982913945729478238750702527615, 8.542414096846067177198244976201, 8.724106438367421303345162639094