Base field \(\Q(\sqrt{10}) \)
Generator \(w\), with minimal polynomial \(x^2 - 10\); narrow class number \(2\) and class number \(2\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[135,45,3 w - 15]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $44$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, w]$ | $\phantom{-}0$ |
| 3 | $[3, 3, w + 1]$ | $\phantom{-}0$ |
| 3 | $[3, 3, w + 2]$ | $-1$ |
| 5 | $[5, 5, w]$ | $\phantom{-}1$ |
| 13 | $[13, 13, w + 6]$ | $\phantom{-}4$ |
| 13 | $[13, 13, w + 7]$ | $-2$ |
| 31 | $[31, 31, -2 w + 3]$ | $-4$ |
| 31 | $[31, 31, 2 w + 3]$ | $-4$ |
| 37 | $[37, 37, w + 11]$ | $-8$ |
| 37 | $[37, 37, w + 26]$ | $-2$ |
| 41 | $[41, 41, 3 w + 7]$ | $-12$ |
| 41 | $[41, 41, -3 w + 7]$ | $-6$ |
| 43 | $[43, 43, w + 15]$ | $-8$ |
| 43 | $[43, 43, w + 28]$ | $\phantom{-}4$ |
| 49 | $[49, 7, -7]$ | $\phantom{-}2$ |
| 53 | $[53, 53, w + 13]$ | $\phantom{-}6$ |
| 53 | $[53, 53, w + 40]$ | $\phantom{-}6$ |
| 67 | $[67, 67, w + 12]$ | $\phantom{-}4$ |
| 67 | $[67, 67, w + 55]$ | $\phantom{-}4$ |
| 71 | $[71, 71, -w - 9]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $3$ | $[3,3,-w + 1]$ | $1$ |
| $3$ | $[3,3,-w + 2]$ | $1$ |
| $5$ | $[5,5,-w]$ | $-1$ |