L(s) = 1 | + 3-s − 4-s − 2·9-s − 12-s + 6·13-s + 16-s + 12·19-s + 9·25-s − 5·27-s + 4·31-s + 2·36-s − 2·37-s + 6·39-s − 12·43-s + 48-s + 49-s − 6·52-s + 12·57-s − 5·61-s − 64-s − 20·67-s − 12·73-s + 9·75-s − 12·76-s + 10·79-s + 81-s + 4·93-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1/2·4-s − 2/3·9-s − 0.288·12-s + 1.66·13-s + 1/4·16-s + 2.75·19-s + 9/5·25-s − 0.962·27-s + 0.718·31-s + 1/3·36-s − 0.328·37-s + 0.960·39-s − 1.82·43-s + 0.144·48-s + 1/7·49-s − 0.832·52-s + 1.58·57-s − 0.640·61-s − 1/8·64-s − 2.44·67-s − 1.40·73-s + 1.03·75-s − 1.37·76-s + 1.12·79-s + 1/9·81-s + 0.414·93-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.165291390\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.165291390\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.844462594342556686413760357438, −8.541345073161162991865921191685, −7.901970281342507801265299952741, −7.63387805545414500658670818644, −7.01502842228840028247741179989, −6.43557342179424431059040572881, −5.93304684443894674433660571832, −5.42936613812177500958205378805, −4.96299607546879585210397813322, −4.42236058316872853140001339718, −3.48374024140300898680999189779, −3.26419279322283984276892223134, −2.87780032541234489013395254365, −1.62250923930147037930720994646, −0.927917143785814056993105056714,
0.927917143785814056993105056714, 1.62250923930147037930720994646, 2.87780032541234489013395254365, 3.26419279322283984276892223134, 3.48374024140300898680999189779, 4.42236058316872853140001339718, 4.96299607546879585210397813322, 5.42936613812177500958205378805, 5.93304684443894674433660571832, 6.43557342179424431059040572881, 7.01502842228840028247741179989, 7.63387805545414500658670818644, 7.901970281342507801265299952741, 8.541345073161162991865921191685, 8.844462594342556686413760357438