Properties

Label 4-5202e2-1.1-c1e2-0-10
Degree $4$
Conductor $27060804$
Sign $1$
Analytic cond. $1725.42$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 3·5-s − 7-s + 4·8-s + 6·10-s + 3·11-s + 13-s − 2·14-s + 5·16-s − 5·19-s + 9·20-s + 6·22-s + 6·23-s + 5·25-s + 2·26-s − 3·28-s − 3·29-s + 2·31-s + 6·32-s − 3·35-s + 17·37-s − 10·38-s + 12·40-s + 12·41-s − 5·43-s + 9·44-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.34·5-s − 0.377·7-s + 1.41·8-s + 1.89·10-s + 0.904·11-s + 0.277·13-s − 0.534·14-s + 5/4·16-s − 1.14·19-s + 2.01·20-s + 1.27·22-s + 1.25·23-s + 25-s + 0.392·26-s − 0.566·28-s − 0.557·29-s + 0.359·31-s + 1.06·32-s − 0.507·35-s + 2.79·37-s − 1.62·38-s + 1.89·40-s + 1.87·41-s − 0.762·43-s + 1.35·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(27060804\)    =    \(2^{2} \cdot 3^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(1725.42\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 27060804,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(13.95532343\)
\(L(\frac12)\) \(\approx\) \(13.95532343\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
17 \( 1 \)
good5$C_2^2$ \( 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \) 2.5.ad_e
7$D_{4}$ \( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} \) 2.7.b_g
11$D_{4}$ \( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} \) 2.11.ad_q
13$D_{4}$ \( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} \) 2.13.ab_s
19$D_{4}$ \( 1 + 5 T + 36 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.19.f_bk
23$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.23.ag_w
29$D_{4}$ \( 1 + 3 T + 52 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.29.d_ca
31$C_2$ \( ( 1 - T + p T^{2} )^{2} \) 2.31.ac_cl
37$D_{4}$ \( 1 - 17 T + 138 T^{2} - 17 p T^{3} + p^{2} T^{4} \) 2.37.ar_fi
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.41.am_eo
43$D_{4}$ \( 1 + 5 T + 18 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.43.f_s
47$D_{4}$ \( 1 + 6 T + 70 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.47.g_cs
53$D_{4}$ \( 1 - 9 T + 118 T^{2} - 9 p T^{3} + p^{2} T^{4} \) 2.53.aj_eo
59$D_{4}$ \( 1 - 21 T + 220 T^{2} - 21 p T^{3} + p^{2} T^{4} \) 2.59.av_im
61$D_{4}$ \( 1 - 11 T + 144 T^{2} - 11 p T^{3} + p^{2} T^{4} \) 2.61.al_fo
67$D_{4}$ \( 1 + 5 T + 132 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.67.f_fc
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.71.am_gw
73$D_{4}$ \( 1 + 7 T + 84 T^{2} + 7 p T^{3} + p^{2} T^{4} \) 2.73.h_dg
79$D_{4}$ \( 1 + 13 T + 126 T^{2} + 13 p T^{3} + p^{2} T^{4} \) 2.79.n_ew
83$D_{4}$ \( 1 - 6 T + 142 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.83.ag_fm
89$D_{4}$ \( 1 + 18 T + 226 T^{2} + 18 p T^{3} + p^{2} T^{4} \) 2.89.s_is
97$D_{4}$ \( 1 + 4 T + 165 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.97.e_gj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.352858892023789345826191066471, −8.114857523456368351314550360856, −7.36448577483639707022553206633, −7.02465474830583399604592316349, −6.93829529921728524367560932036, −6.40530961525189977150066428384, −6.09763525581630944575250456400, −5.86499783439955008617490490118, −5.65751290880567298595510201356, −5.09114734733569358351279985850, −4.65406688071813855460403116785, −4.43049406144802548401085429942, −3.81507568475773144915921472697, −3.76301385785602506739773701397, −2.91238116219487434120396023341, −2.79625187249406581356029160221, −2.10091031701714781232573234459, −2.05527898883777461694942068181, −1.12431932096337133818520140198, −0.857673610296752418615278576551, 0.857673610296752418615278576551, 1.12431932096337133818520140198, 2.05527898883777461694942068181, 2.10091031701714781232573234459, 2.79625187249406581356029160221, 2.91238116219487434120396023341, 3.76301385785602506739773701397, 3.81507568475773144915921472697, 4.43049406144802548401085429942, 4.65406688071813855460403116785, 5.09114734733569358351279985850, 5.65751290880567298595510201356, 5.86499783439955008617490490118, 6.09763525581630944575250456400, 6.40530961525189977150066428384, 6.93829529921728524367560932036, 7.02465474830583399604592316349, 7.36448577483639707022553206633, 8.114857523456368351314550360856, 8.352858892023789345826191066471

Graph of the $Z$-function along the critical line