L(s) = 1 | − 7·2-s − 69·4-s − 250·5-s + 1.30e3·7-s + 413·8-s + 1.75e3·10-s − 3.44e3·11-s − 8.98e3·13-s − 9.12e3·14-s − 4.86e3·16-s + 5.49e3·17-s − 4.95e4·19-s + 1.72e4·20-s + 2.41e4·22-s − 9.18e4·23-s + 4.68e4·25-s + 6.29e4·26-s − 8.99e4·28-s − 1.81e5·29-s + 3.04e5·31-s + 1.61e5·32-s − 3.84e4·34-s − 3.26e5·35-s − 5.02e5·37-s + 3.47e5·38-s − 1.03e5·40-s − 6.31e5·41-s + ⋯ |
L(s) = 1 | − 0.618·2-s − 0.539·4-s − 0.894·5-s + 1.43·7-s + 0.285·8-s + 0.553·10-s − 0.781·11-s − 1.13·13-s − 0.889·14-s − 0.296·16-s + 0.271·17-s − 1.65·19-s + 0.482·20-s + 0.483·22-s − 1.57·23-s + 3/5·25-s + 0.702·26-s − 0.774·28-s − 1.38·29-s + 1.83·31-s + 0.872·32-s − 0.167·34-s − 1.28·35-s − 1.63·37-s + 1.02·38-s − 0.255·40-s − 1.43·41-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(2025s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
197.608 |
Root analytic conductor: |
3.74931 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2025, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+p3T)2 |
good | 2 | D4 | 1+7T+59pT2+7p7T3+p14T4 |
| 7 | D4 | 1−1304T+1601006T2−1304p7T3+p14T4 |
| 11 | D4 | 1+3448T+9598294T2+3448p7T3+p14T4 |
| 13 | D4 | 1+8988T+43676926T2+8988p7T3+p14T4 |
| 17 | D4 | 1−5492T+533727862T2−5492p7T3+p14T4 |
| 19 | D4 | 1+49584T+1767259558T2+49584p7T3+p14T4 |
| 23 | D4 | 1+91848T+4843394254T2+91848p7T3+p14T4 |
| 29 | D4 | 1+6268pT+32439203278T2+6268p8T3+p14T4 |
| 31 | D4 | 1−304232T+77458297022T2−304232p7T3+p14T4 |
| 37 | D4 | 1+502316T+221684315886T2+502316p7T3+p14T4 |
| 41 | D4 | 1+631172T+420346017142T2+631172p7T3+p14T4 |
| 43 | D4 | 1−353640T+567251429590T2−353640p7T3+p14T4 |
| 47 | D4 | 1−467480T+1062629128990T2−467480p7T3+p14T4 |
| 53 | D4 | 1−568052T+2403786403294T2−568052p7T3+p14T4 |
| 59 | D4 | 1+287224T+1627391637238T2+287224p7T3+p14T4 |
| 61 | D4 | 1+2514180T+7865442419758T2+2514180p7T3+p14T4 |
| 67 | D4 | 1+5073832T+16021265240102T2+5073832p7T3+p14T4 |
| 71 | D4 | 1−3748816T+20824804809646T2−3748816p7T3+p14T4 |
| 73 | D4 | 1+1477212T−3158190986T2+1477212p7T3+p14T4 |
| 79 | D4 | 1+4627720T+42789559383518T2+4627720p7T3+p14T4 |
| 83 | D4 | 1−6072936T+62224060120582T2−6072936p7T3+p14T4 |
| 89 | D4 | 1+16516356T+156597055746838T2+16516356p7T3+p14T4 |
| 97 | D4 | 1−2723428T+135845063471622T2−2723428p7T3+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.84188907858769980231030012621, −13.81849805991726470654828166429, −12.64154293168540013826529166892, −12.22829697892357241591768583173, −11.64710674077183346086845416618, −11.03745075735779380247780328528, −10.27130159313228053604390998013, −9.939056423156428691375938383141, −8.734492645305948054844981074791, −8.554147740585570774472803405260, −7.81092460717480919964266114578, −7.47085272984639799998415172378, −6.34083011669719464819863907502, −5.20345335328960321441633260041, −4.61207387956342506577495486947, −4.00798575400841684145448791088, −2.57140154513953339983378026514, −1.62901188374473814017497986832, 0, 0,
1.62901188374473814017497986832, 2.57140154513953339983378026514, 4.00798575400841684145448791088, 4.61207387956342506577495486947, 5.20345335328960321441633260041, 6.34083011669719464819863907502, 7.47085272984639799998415172378, 7.81092460717480919964266114578, 8.554147740585570774472803405260, 8.734492645305948054844981074791, 9.939056423156428691375938383141, 10.27130159313228053604390998013, 11.03745075735779380247780328528, 11.64710674077183346086845416618, 12.22829697892357241591768583173, 12.64154293168540013826529166892, 13.81849805991726470654828166429, 13.84188907858769980231030012621