Properties

Label 45.8.a.i
Level $45$
Weight $8$
Character orbit 45.a
Self dual yes
Analytic conductor $14.057$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,8,Mod(1,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0573261468\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{601}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 150 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{601})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 3) q^{2} + (7 \beta + 31) q^{4} - 125 q^{5} + ( - 56 \beta + 680) q^{7} + (69 \beta - 759) q^{8} + (125 \beta + 375) q^{10} + (464 \beta - 1956) q^{11} + (824 \beta - 4906) q^{13} + ( - 456 \beta + 6360) q^{14}+ \cdots + (182839 \beta + 10625829) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 7 q^{2} + 69 q^{4} - 250 q^{5} + 1304 q^{7} - 1449 q^{8} + 875 q^{10} - 3448 q^{11} - 8988 q^{13} + 12264 q^{14} - 24495 q^{16} + 5492 q^{17} - 49584 q^{19} - 8625 q^{20} - 127364 q^{22} - 91848 q^{23}+ \cdots + 21434497 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
12.7577
−11.7577
−15.7577 0 120.304 −125.000 0 −34.4284 121.278 0 1969.71
1.2 8.75765 0 −51.3036 −125.000 0 1338.43 −1570.28 0 −1094.71
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.8.a.i 2
3.b odd 2 1 15.8.a.c 2
5.b even 2 1 225.8.a.t 2
5.c odd 4 2 225.8.b.n 4
12.b even 2 1 240.8.a.p 2
15.d odd 2 1 75.8.a.e 2
15.e even 4 2 75.8.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.8.a.c 2 3.b odd 2 1
45.8.a.i 2 1.a even 1 1 trivial
75.8.a.e 2 15.d odd 2 1
75.8.b.d 4 15.e even 4 2
225.8.a.t 2 5.b even 2 1
225.8.b.n 4 5.c odd 4 2
240.8.a.p 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 7T_{2} - 138 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(45))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 7T - 138 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 1304T - 46080 \) Copy content Toggle raw display
$11$ \( T^{2} + 3448 T - 29376048 \) Copy content Toggle raw display
$13$ \( T^{2} + 8988 T - 81820108 \) Copy content Toggle raw display
$17$ \( T^{2} - 5492 T - 286949484 \) Copy content Toggle raw display
$19$ \( T^{2} + 49584 T - 20483920 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1966256640 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 2060549340 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 22433068800 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 31820561620 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 30837469380 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 23614207376 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 49382888064 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 54364123620 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 3349911332400 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1579956747716 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 3899842029456 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2634564492864 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 22097955229180 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4381741411200 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 7951958141328 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 68134385955780 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 25751505484604 \) Copy content Toggle raw display
show more
show less