L(s) = 1 | + 2-s + 4-s − 7-s + 8-s + 2·9-s − 14-s + 16-s + 2·18-s + 10·25-s − 28-s + 32-s + 2·36-s + 49-s + 10·50-s − 56-s − 2·63-s + 64-s + 2·72-s − 16·79-s − 5·81-s + 98-s + 10·100-s − 112-s − 12·113-s − 22·121-s − 2·126-s + 127-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s + 2/3·9-s − 0.267·14-s + 1/4·16-s + 0.471·18-s + 2·25-s − 0.188·28-s + 0.176·32-s + 1/3·36-s + 1/7·49-s + 1.41·50-s − 0.133·56-s − 0.251·63-s + 1/8·64-s + 0.235·72-s − 1.80·79-s − 5/9·81-s + 0.101·98-s + 100-s − 0.0944·112-s − 1.12·113-s − 2·121-s − 0.178·126-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 43904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.105685636 |
L(21) |
≈ |
2.105685636 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 7 | C1 | 1+T |
good | 3 | C22 | 1−2T2+p2T4 |
| 5 | C2 | (1−pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−34T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C22 | 1−82T2+p2T4 |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35429207920592299666236056630, −9.737571352224082577057668604337, −9.230234198592328844814622223277, −8.647620969069333470108951478696, −8.102096221801790937263883784465, −7.36010673208194959503095702760, −6.94438036583863366124517437556, −6.51987156391339999128357750064, −5.82258912862470940314930166189, −5.18598252263235902284418013548, −4.59160399106119589499226900700, −4.00728883804981885022921502277, −3.20128729290109899034222112750, −2.55522247581925182860702086473, −1.34090643042552658976895105787,
1.34090643042552658976895105787, 2.55522247581925182860702086473, 3.20128729290109899034222112750, 4.00728883804981885022921502277, 4.59160399106119589499226900700, 5.18598252263235902284418013548, 5.82258912862470940314930166189, 6.51987156391339999128357750064, 6.94438036583863366124517437556, 7.36010673208194959503095702760, 8.102096221801790937263883784465, 8.647620969069333470108951478696, 9.230234198592328844814622223277, 9.737571352224082577057668604337, 10.35429207920592299666236056630