L(s) = 1 | − 4·3-s − 7-s + 6·9-s + 4·19-s + 4·21-s + 6·25-s + 4·27-s + 4·29-s − 8·31-s − 12·37-s + 8·47-s + 49-s − 20·53-s − 16·57-s − 12·59-s − 6·63-s − 24·75-s − 37·81-s − 12·83-s − 16·87-s + 32·93-s + 24·103-s + 20·109-s + 48·111-s + 12·113-s − 22·121-s + 127-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 0.377·7-s + 2·9-s + 0.917·19-s + 0.872·21-s + 6/5·25-s + 0.769·27-s + 0.742·29-s − 1.43·31-s − 1.97·37-s + 1.16·47-s + 1/7·49-s − 2.74·53-s − 2.11·57-s − 1.56·59-s − 0.755·63-s − 2.77·75-s − 4.11·81-s − 1.31·83-s − 1.71·87-s + 3.31·93-s + 2.36·103-s + 1.91·109-s + 4.55·111-s + 1.12·113-s − 2·121-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
−1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 43904, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | 1+T |
good | 3 | C2 | (1+2T+pT2)2 |
| 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−4T+pT2)2 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27322067133513101779746201704, −9.590662754018899629342276160434, −8.870187268949863787955145092048, −8.605229056688940905430426859414, −7.48523560915642098619060234168, −7.22672629765934394974316502798, −6.34948564084072494191115955004, −6.27767574855681654030919817110, −5.57466416223045488855827312533, −4.90170998996837834018405216678, −4.88658861407619853654072156509, −3.61118272831897977078492843408, −2.87703403465824901690577931359, −1.30690906969982341922250798482, 0,
1.30690906969982341922250798482, 2.87703403465824901690577931359, 3.61118272831897977078492843408, 4.88658861407619853654072156509, 4.90170998996837834018405216678, 5.57466416223045488855827312533, 6.27767574855681654030919817110, 6.34948564084072494191115955004, 7.22672629765934394974316502798, 7.48523560915642098619060234168, 8.605229056688940905430426859414, 8.870187268949863787955145092048, 9.590662754018899629342276160434, 10.27322067133513101779746201704