Properties

Label 112.a
Number of curves $2$
Conductor $112$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 112.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 112.a do not have complex multiplication.

Modular form 112.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 4 q^{5} - q^{7} + q^{9} + 8 q^{15} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 112.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
112.a1 112a2 \([0, 1, 0, -40, 84]\) \(3543122/49\) \(100352\) \([2]\) \(16\) \(-0.23467\)  
112.a2 112a1 \([0, 1, 0, 0, 4]\) \(-4/7\) \(-7168\) \([2]\) \(8\) \(-0.58124\) \(\Gamma_0(N)\)-optimal