L(s) = 1 | − 2-s + 4-s + 7-s − 8-s − 2·9-s − 8·13-s − 14-s + 16-s + 2·18-s − 10·25-s + 8·26-s + 28-s − 8·31-s − 32-s − 2·36-s + 16·43-s − 24·47-s + 49-s + 10·50-s − 8·52-s − 56-s + 16·61-s + 8·62-s − 2·63-s + 64-s − 8·67-s + 2·72-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 2.21·13-s − 0.267·14-s + 1/4·16-s + 0.471·18-s − 2·25-s + 1.56·26-s + 0.188·28-s − 1.43·31-s − 0.176·32-s − 1/3·36-s + 2.43·43-s − 3.50·47-s + 1/7·49-s + 1.41·50-s − 1.10·52-s − 0.133·56-s + 2.04·61-s + 1.01·62-s − 0.251·63-s + 1/8·64-s − 0.977·67-s + 0.235·72-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
−1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 43904, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 7 | C1 | 1−T |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 5 | C2 | (1+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.765547119459919407856461234632, −9.649484617797021810103268663298, −8.934540413043951629895618965043, −8.408228795468761224431793416064, −7.68957389720506083723150978195, −7.57571100088867902110310233811, −6.96175265373852036821224883683, −6.17368924384109906924363362759, −5.57928681742950427486583645839, −5.06701824847582369879735343431, −4.31547623044891473234039816601, −3.42443184461883656887541100921, −2.49739457868022289115900838847, −1.90996831082337002056034743405, 0,
1.90996831082337002056034743405, 2.49739457868022289115900838847, 3.42443184461883656887541100921, 4.31547623044891473234039816601, 5.06701824847582369879735343431, 5.57928681742950427486583645839, 6.17368924384109906924363362759, 6.96175265373852036821224883683, 7.57571100088867902110310233811, 7.68957389720506083723150978195, 8.408228795468761224431793416064, 8.934540413043951629895618965043, 9.649484617797021810103268663298, 9.765547119459919407856461234632