Properties

Label 2.2.56.1-14.1-a
Base field \(\Q(\sqrt{14}) \)
Weight $[2, 2]$
Level norm $14$
Level $[14, 14, w]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{14}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 14\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[14, 14, w]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 4]$ $-1$
5 $[5, 5, -w + 3]$ $\phantom{-}0$
5 $[5, 5, w + 3]$ $\phantom{-}0$
7 $[7, 7, -2w - 7]$ $\phantom{-}1$
9 $[9, 3, 3]$ $-2$
11 $[11, 11, w + 5]$ $\phantom{-}0$
11 $[11, 11, -w + 5]$ $\phantom{-}0$
13 $[13, 13, -w - 1]$ $-4$
13 $[13, 13, -w + 1]$ $-4$
31 $[31, 31, 2w - 5]$ $-4$
31 $[31, 31, -2w - 5]$ $-4$
43 $[43, 43, 7w + 27]$ $\phantom{-}8$
43 $[43, 43, 3w + 13]$ $\phantom{-}8$
47 $[47, 47, 2w - 3]$ $-12$
47 $[47, 47, -2w - 3]$ $-12$
61 $[61, 61, 7w + 25]$ $\phantom{-}8$
61 $[61, 61, -5w - 17]$ $\phantom{-}8$
67 $[67, 67, -w - 9]$ $-4$
67 $[67, 67, w - 9]$ $-4$
101 $[101, 101, 3w - 5]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w - 4]$ $1$
$7$ $[7, 7, -2w - 7]$ $-1$