Base field \(\Q(\sqrt{14}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 14\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[14, 14, w]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $6$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, -w - 4]$ | $-1$ |
5 | $[5, 5, -w + 3]$ | $\phantom{-}0$ |
5 | $[5, 5, w + 3]$ | $\phantom{-}0$ |
7 | $[7, 7, -2w - 7]$ | $\phantom{-}1$ |
9 | $[9, 3, 3]$ | $-2$ |
11 | $[11, 11, w + 5]$ | $\phantom{-}0$ |
11 | $[11, 11, -w + 5]$ | $\phantom{-}0$ |
13 | $[13, 13, -w - 1]$ | $-4$ |
13 | $[13, 13, -w + 1]$ | $-4$ |
31 | $[31, 31, 2w - 5]$ | $-4$ |
31 | $[31, 31, -2w - 5]$ | $-4$ |
43 | $[43, 43, 7w + 27]$ | $\phantom{-}8$ |
43 | $[43, 43, 3w + 13]$ | $\phantom{-}8$ |
47 | $[47, 47, 2w - 3]$ | $-12$ |
47 | $[47, 47, -2w - 3]$ | $-12$ |
61 | $[61, 61, 7w + 25]$ | $\phantom{-}8$ |
61 | $[61, 61, -5w - 17]$ | $\phantom{-}8$ |
67 | $[67, 67, -w - 9]$ | $-4$ |
67 | $[67, 67, w - 9]$ | $-4$ |
101 | $[101, 101, 3w - 5]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, -w - 4]$ | $1$ |
$7$ | $[7, 7, -2w - 7]$ | $-1$ |