L(s) = 1 | − 2-s + 4-s − 7-s − 8-s − 9-s + 14-s + 16-s − 3·17-s + 18-s − 15·23-s − 2·25-s − 28-s − 12·31-s − 32-s + 3·34-s − 36-s − 3·41-s + 15·46-s + 9·47-s + 49-s + 2·50-s + 56-s + 12·62-s + 63-s + 64-s − 3·68-s + 9·71-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s − 1/3·9-s + 0.267·14-s + 1/4·16-s − 0.727·17-s + 0.235·18-s − 3.12·23-s − 2/5·25-s − 0.188·28-s − 2.15·31-s − 0.176·32-s + 0.514·34-s − 1/6·36-s − 0.468·41-s + 2.21·46-s + 1.31·47-s + 1/7·49-s + 0.282·50-s + 0.133·56-s + 1.52·62-s + 0.125·63-s + 1/8·64-s − 0.363·68-s + 1.06·71-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
−1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 43904, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 7 | C1 | 1+T |
good | 3 | C22 | 1+T2+p2T4 |
| 5 | C22 | 1+2T2+p2T4 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | C2×C2 | (1−3T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−34T2+p2T4 |
| 23 | C2×C2 | (1+6T+pT2)(1+9T+pT2) |
| 29 | C22 | 1−17T2+p2T4 |
| 31 | C2×C2 | (1+5T+pT2)(1+7T+pT2) |
| 37 | C22 | 1+7T2+p2T4 |
| 41 | C2×C2 | (1+pT2)(1+3T+pT2) |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2×C2 | (1−12T+pT2)(1+3T+pT2) |
| 53 | C22 | 1−95T2+p2T4 |
| 59 | C22 | 1+101T2+p2T4 |
| 61 | C22 | 1−40T2+p2T4 |
| 67 | C22 | 1+46T2+p2T4 |
| 71 | C2×C2 | (1−6T+pT2)(1−3T+pT2) |
| 73 | C2×C2 | (1−16T+pT2)(1−2T+pT2) |
| 79 | C2×C2 | (1−7T+pT2)(1+2T+pT2) |
| 83 | C22 | 1−145T2+p2T4 |
| 89 | C2×C2 | (1+pT2)(1+9T+pT2) |
| 97 | C2×C2 | (1−14T+pT2)(1−10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.903259475993730301133601247932, −9.400946509192316215215642760736, −9.032872625967611552960835581299, −8.322439564034960678023719361421, −7.986082184770432412320687121706, −7.40607211260737083787304764859, −6.80999099230277597284059767890, −6.15879308148576935335469093848, −5.78902777848912703504487358241, −5.08639353379536435232603331513, −3.92316526135323766397833934784, −3.75383713546245393225954256150, −2.46401242958316858193289692726, −1.88856445010374489988253513893, 0,
1.88856445010374489988253513893, 2.46401242958316858193289692726, 3.75383713546245393225954256150, 3.92316526135323766397833934784, 5.08639353379536435232603331513, 5.78902777848912703504487358241, 6.15879308148576935335469093848, 6.80999099230277597284059767890, 7.40607211260737083787304764859, 7.986082184770432412320687121706, 8.322439564034960678023719361421, 9.032872625967611552960835581299, 9.400946509192316215215642760736, 9.903259475993730301133601247932