Properties

Label 4-42e4-1.1-c2e2-0-2
Degree $4$
Conductor $3111696$
Sign $1$
Analytic cond. $2310.29$
Root an. cond. $6.93293$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 50·25-s − 94·37-s − 166·43-s − 218·67-s + 262·79-s − 286·109-s − 242·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 337·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  + 2·25-s − 2.54·37-s − 3.86·43-s − 3.25·67-s + 3.31·79-s − 2.62·109-s − 2·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.99·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3111696\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2310.29\)
Root analytic conductor: \(6.93293\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3111696,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.8653182710\)
\(L(\frac12)\) \(\approx\) \(0.8653182710\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
11$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p^{2} T^{2} )( 1 + T + p^{2} T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
19$C_2$ \( ( 1 - 37 T + p^{2} T^{2} )( 1 + 37 T + p^{2} T^{2} ) \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
29$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 59 T + p^{2} T^{2} )( 1 + 59 T + p^{2} T^{2} ) \)
37$C_2$ \( ( 1 + 47 T + p^{2} T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2$ \( ( 1 + 83 T + p^{2} T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_2$ \( ( 1 - 74 T + p^{2} T^{2} )( 1 + 74 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 + 109 T + p^{2} T^{2} )^{2} \)
71$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 143 T + p^{2} T^{2} )( 1 + 143 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 - 131 T + p^{2} T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
97$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )( 1 + 2 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.167619524977627984786768467535, −8.893507568642603225504536023398, −8.618561865501307005566447917880, −8.138245616333137025369813177963, −7.82371266056352850905535584450, −7.26591815117370438036045134988, −6.84246275220602777596355889579, −6.49502437640926880484117657050, −6.40687313990306286913915338816, −5.44770955865084735282240718119, −5.23686254162897457698565427796, −4.88478739772536426627467866995, −4.49605238053017678983952142430, −3.60160788491019171088966842766, −3.53004825071167767830153317139, −2.92255987812982272530874233845, −2.40210214058272971773926815179, −1.51759060196703476486870935817, −1.39437209184315243454134998295, −0.24362651316094292010829520575, 0.24362651316094292010829520575, 1.39437209184315243454134998295, 1.51759060196703476486870935817, 2.40210214058272971773926815179, 2.92255987812982272530874233845, 3.53004825071167767830153317139, 3.60160788491019171088966842766, 4.49605238053017678983952142430, 4.88478739772536426627467866995, 5.23686254162897457698565427796, 5.44770955865084735282240718119, 6.40687313990306286913915338816, 6.49502437640926880484117657050, 6.84246275220602777596355889579, 7.26591815117370438036045134988, 7.82371266056352850905535584450, 8.138245616333137025369813177963, 8.618561865501307005566447917880, 8.893507568642603225504536023398, 9.167619524977627984786768467535

Graph of the $Z$-function along the critical line